Polyamide membrane with nanocluster assembly structure for desalination

2021 ◽  
Vol 628 ◽  
pp. 119230
Author(s):  
Shuhao Wang ◽  
Shaosuo Bing ◽  
Yunhao Li ◽  
Yong Zhou ◽  
Lin Zhang ◽  
...  
2021 ◽  
Vol 1034 (1) ◽  
pp. 012092
Author(s):  
Nanang Ali Sutisna ◽  
Nasir Widha Setyanto

2008 ◽  
Vol 54 (3-4) ◽  
pp. 109-115 ◽  
Author(s):  
Ginka Delcheva ◽  
Georgi Dobrev ◽  
Ivan Pishtiyski

ACS Nano ◽  
2007 ◽  
Vol 1 (5) ◽  
pp. 476-486 ◽  
Author(s):  
Ling Zhang ◽  
Wanhua Zhao ◽  
Jai S. Rudra ◽  
Donald T. Haynie

2020 ◽  
Vol 6 (34) ◽  
pp. eaba4897 ◽  
Author(s):  
Stefan T. Huber ◽  
Siavash Mostafavi ◽  
Simon A. Mortensen ◽  
Carsten Sachse

ESCRT-III proteins mediate a range of cellular membrane remodeling activities such as multivesicular body biogenesis, cytokinesis, and viral release. Critical to these processes is the assembly of ESCRT-III subunits into polymeric structures. In this study, we determined the cryo-EM structure of a helical assembly of Saccharomyces cerevisiae Vps24 at 3.2-Å resolution and found that Vps24 adopts an elongated open conformation. Vps24 forms a domain-swapped dimer extended into protofilaments that associate into a double-stranded apolar filament. We demonstrate that, upon binding negatively charged lipids, Vps24 homopolymer filaments undergo partial disassembly into shorter filament fragments and oligomers. Upon the addition of Vps24, Vps2, and Snf7, liposomes are deformed into neck and tubular structures by an ESCRT-III heteropolymer coat. The filamentous Vps24 homopolymer assembly structure and interaction studies reveal how Vps24 could introduce unique geometric properties to mixed-type ESCRT-III heteropolymers and contribute to the process of membrane scission events.


Author(s):  
M. S. Lefebvre ◽  
C. J. D. Fell ◽  
A. G. Fane ◽  
A. G. Waters
Keyword(s):  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
C.F. Castro-Guerrero ◽  
A.B. Morales-Cepeda ◽  
M.R. Díaz-Guillén ◽  
F. Delgado-Arroyo ◽  
F.A. López-González

Abstract Cellulose nanocrystals were extracted from cotton. The cellulose nanocrystals made a self-assembly structure when dried under slow conditions, as it was revealed by the characterization made to the material. The AFM images of the nanocrystals showed that they had a changing local orientation, pointing in a preferred direction that underwent a periodic change. This periodic change resembles the orientation of a chiral nematic phase. The TEM images showed that the nanocrystals had a rod-like appearance with average length size of 98.5 nm and a diameter of 4.7 nm. The TEM characterization showed the nanocrystals with more details than AFM. In this paper, the self-assembling of CNC was observed by AFM, and further investigations were done by TEM, deconvoluting the process of CNC nanorods aggregation.


2018 ◽  
Vol 5 (5) ◽  
pp. 180247 ◽  
Author(s):  
Yuanming Zhang ◽  
Tingting Sun ◽  
Wei Jiang ◽  
Guangting Han

In this paper, the crystalline modification of a rare earth nucleating agent (WBG) for isotactic polypropylene (PP) based on its supramolecular self-assembly was investigated by differential scanning calorimetry, wide-angle X-ray diffraction and polarized optical microscopy. In addition, the relationship between the self-assembly structure of the nucleating agent and the crystalline structure, as well as the possible reason for the self-assembly behaviour, was further studied. The structure evolution of WBG showed that the self-assembly structure changed from a needle-like structure to a dendritic structure with increase in the content of WBG. When the content of WBG exceeded a critical value (0.4 wt%), it self-assembled into a strip structure. This revealed that the structure evolution of WBG contributed to the K β and the crystallization morphology of PP with different content of WBG. In addition, further studies implied that the behaviour of self-assembly was a liquid–solid transformation of WBG, followed by a liquid–liquid phase separation of molten isotactic PP and WBG. The formation of the self-assembly structure was based on the free molecules by hydrogen bond dissociation while being heated, followed by aggregation into another structure by hydrogen bond association while being cooled. Furthermore, self-assembly behaviour depends largely on the interaction between WBG themselves.


Sign in / Sign up

Export Citation Format

Share Document