Renewable energy powered membrane technology: Impact of osmotic backwash on organic fouling during solar irradiance fluctuation

2022 ◽  
pp. 120286
Author(s):  
Yang-Hui Cai ◽  
Claus J. Burkhardt ◽  
Andrea I. Schäfer
2014 ◽  
Vol 468 ◽  
pp. 400-409 ◽  
Author(s):  
Bryce S. Richards ◽  
Gavin L. Park ◽  
Thomas Pietzsch ◽  
Andrea I. Schäfer

Author(s):  
Raj Kumar Yadav ◽  
Nivedita Sethy

The accurate prediction of solar irradiation has been a leading problem for better energy scheduling approach. Hence in this paper, an Artificial neural network based solar irradiance is proposed for five days duration the data is obtained from National Renewable Energy Laboratory, USA and the simulation were performed using MATLAB 2013. It was found that the neural model was able to predict the solar irradiance with a mean square error of 0.0355.


Author(s):  
Aiman Suhailah Saifuddin ◽  
Karmila Kamil ◽  
Halimatun Hashim ◽  
Ruthraganapathy Radhakrishnan

<p>Solar PV may cause power congestion to occur in a transmission line when there is high solar irradiance that causing solar PV to generate more power flow than demanded power flow. Transmission line congestion that can be made worst by adding extra power generating farm such as centralized PV farm of renewable energy which helps to deliver customers with the demand or load required. The power generated coming from solar PV is depending on the weather and can definitely worsen the flow in transmission line due to the power captured. In this case, the high solar irradiance can affect the power generated from solar PV and will cause power congestion when power generated is higher than the load demanded. In this paper, the proposed method used to overcome the power congestion in a transmission line is by rerouting the excess power from the overloaded line to underloaded line by changing the line reactance of the line. An IEEE 30 bus test system is developed in PSS/E software as the test system. The output monitored is the line stability index of the affected line before and after rerouting process.</p>


2019 ◽  
Vol 142 (3) ◽  
Author(s):  
Jane Oktavia Kamadinata ◽  
Tan Lit Ken ◽  
Tohru Suwa

Abstract Renewable energy is an attractive alternative source of energy to fossil fuels, as it can help prevent global warming and air pollution. Solar energy, one of the most promising renewable energy sources, can be converted into electricity using photovoltaic power generation systems. Anywhere on the Earth, solar irradiance generally fluctuates during the day but depends on atmospheric conditions. Thus, when a photovoltaic power generation system is connected to a conventional electricity network, predicting near-future global solar irradiance, especially its drastic increases and decreases, is critical to stabilize the network. In this research, a simple method utilizing artificial neural networks to predict large increases and decreases in global solar irradiance is developed. The red–blue ratio (RBR) values, which are extracted from a set of sampling points in images of the sky, as well as the corresponding global solar irradiance values, are used as the artificial neural network inputs. The direction of the movement of clouds is predicted using RBR data at the sampling points. Then, solar irradiance is predicted using the RBR values along the axis closest to the predicted cloud movement direction and the corresponding solar irradiance measurements. The proposed methodology is able to predict both large increases and decreases in solar irradiance greater than 50 through 100 W/m2 1 min in advance with a 40% prediction error. A significant reduction in computational effort is achieved compared to existing sky image-based methodologies using limited sky image data.


Sign in / Sign up

Export Citation Format

Share Document