scholarly journals Long-term ethanol consumption impairs reverse cholesterol transport function of high-density lipoproteins by depleting high-density lipoprotein sphingomyelin both in rats and in humans

Metabolism ◽  
2007 ◽  
Vol 56 (7) ◽  
pp. 947-953 ◽  
Author(s):  
Philippe Marmillot ◽  
Jennifer Munoz ◽  
Sanket Patel ◽  
Mamatha Garige ◽  
Richard B. Rosse ◽  
...  
Metabolism ◽  
2004 ◽  
Vol 53 (7) ◽  
pp. 858-862 ◽  
Author(s):  
Águeda C.M Zaratin ◽  
Eder C.R Quintão ◽  
Andrei C Sposito ◽  
Valéria S Nunes ◽  
Ana Maria Lottenberg ◽  
...  

2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
R Kannan Mutharasan ◽  
Amritha T Singh ◽  
Kaylin M McMahon ◽  
C Shad Thaxton

Background: Reverse cholesterol transport, the process by which cholesterol is effluxed from cells to high-density lipoproteins (HDL) and is delivered to the liver for clearance, is a promising pathway to augment for treatment of atherosclerosis. Though structure-function relationships for nascent, discoidal HDL and cholesterol efflux have been well studied, how the lipid composition of spherical HDL species - which varies in pathophysiological conditions - impacts their ability to mediate cholesterol efflux has not been investigated. Methods and Results: Spherical gold nanoparticles (5 nm) were used to synthesize spherical HDL analogs (HDL-NP) by adding ApoAI protein, and various lipids. With this strategy a panel of HDL-NP varying in lipid content was generated. HDL-NP designs tested include: dipalmitylphosphatidylcholine (DPPC, saturated fatty acid), dioleoylphosphatidylcholine (DOPC, unsaturated fatty acid), sphingomyelin, lysophosphatidylcholine (LPC), and mixtures thereof. All of these species are found in natural HDL. After characterizing protein and lipid stoichiometry of the purified HDL-NP, these HDL-NP designs were tested in the cellular reverse cholesterol transport assay using J774 mouse macrophages. These studies demonstrate that all HDL-NP designs mediate more efflux than equimolar amounts of ApoAI protein control, and further demonstrate that HDL-NP designs incorporating unsaturated phospholipid (DOPC), sphingomyelin, and LPC - each of which can increase disorder in the lipid membrane and thus give rise to opportunity for cholesterol to intercalate and bind - enhance cholesterol efflux compared to saturated phospholipid (DPPC) design. Conclusion: In summary, these results demonstrate that lipid content of HDL-NP - analogs of spherical HDL - dictates cholesterol efflux function, a finding which sheds light on the functional importance of lipid content variation seen in mature, spherical HDL species.


2012 ◽  
Vol 32 (12) ◽  
pp. 2813-2820 ◽  
Author(s):  
Edward A. Fisher ◽  
Jonathan E. Feig ◽  
Bernd Hewing ◽  
Stanley L. Hazen ◽  
Jonathan D. Smith

Sign in / Sign up

Export Citation Format

Share Document