atp binding cassette transporter
Recently Published Documents


TOTAL DOCUMENTS

1101
(FIVE YEARS 137)

H-INDEX

93
(FIVE YEARS 7)

2021 ◽  
Vol 12 ◽  
Author(s):  
Fangmei Tang ◽  
Linbo Guan ◽  
Xinghui Liu ◽  
Ping Fan ◽  
Mi Zhou ◽  
...  

BackgroundATP-binding cassette transporter A1 (ABCA1) has important roles in high-density lipoprotein (HDL) metabolism and reverse cholesterol transport, and is implicated in lipid-related disorders. Genetic variants are involved in the pathogenesis of gestational diabetes mellitus (GDM). The objective of this study was to investigate the association of rs2230806 (R219K), a single nucleotide polymorphism (SNP) in the lipid-related gene, with the risk of GDM and related traits.MethodsThe SNP, rs2230806, was genotyped, and clinical and metabolic parameters were determined in 660 GDM patients and 1,097 control subjects. Genetic associations with related traits were also analyzed.ResultsThe genotype distributions were similar in GDM patients and normal controls. However, significant differences in the variables examined in the study subjects were noted across the three genotypes. The genotype at the rs2230806 polymorphism was significantly associated with HDL-cholesterol (HDL-C) levels and atherogenic index (AI) values in GDM patients and total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C) levels in control subjects. Subgroup analysis showed that the polymorphism was associated with diastolic blood pressure, in addition to HDL-C levels and AI, in overweight/obese GDM patients, while it was associated with TC levels, AI, pre-pregnancy body mass index (BMI), and BMI at delivery in non-obese GDM patients. In addition, this polymorphism was associated with TC, LDL-C, and apoB levels in overweight/obese control subjects.ConclusionsThe rs2230806 polymorphism in the ABCA1 gene was associated with variations in atherometabolic traits in GDM patients, with characteristics of BMI dependency, but not with GDM. Our findings highlight a link between related phenotypes in women with GDM and genetic factors.


2021 ◽  
Vol 22 (24) ◽  
pp. 13264
Author(s):  
Ke Wen ◽  
Huanting Pan ◽  
Xingang Li ◽  
Rong Huang ◽  
Qibin Ma ◽  
...  

The toxicity of aluminum (Al) in acidic soil limits global crop yield. The ATP-binding cassette (ABC) transporter-like gene superfamily has functions and structures related to transportation, so it responds to aluminum stress in plants. In this study, one half-size ABC transporter gene was isolated from wild soybeans (Glycine soja) and designated GsABCI1. By real-time qPCR, GsABCI1 was identified as not specifically expressed in tissues. Phenotype identification of the overexpressed transgenic lines showed increased tolerance to aluminum. Furthermore, GsABCI1 transgenic plants exhibited some resistance to aluminum treatment by ion translocation or changing root components. This work on the GsABCI1 identified the molecular function, which provided useful information for understanding the gene function of the ABC family and the development of new aluminum-tolerant soybean germplasm.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wei Huang ◽  
Jun Zhang ◽  
Biao Dong ◽  
Haiting Chen ◽  
Liwei Shao ◽  
...  

Endometrial cancer (EC) is one of the most frequent gynecological tumors, and chemoresistance is a major obstacle to improving the prognosis of EC patients. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have recently emerged as crucial chemoresistance regulators that alter the levels of downstream target genes. Multidrug Resistance Protein 7 (MRP-7/ABCC10) is an ATP-binding cassette transporter that causes the resistance to anti-cancer drugs. The purpose of this research is to determine whether MRP-7 has a role in mediating the sensitivity of EC cells to paclitaxel and whether the expression of MRP-7 is regulated by miR-98 and lncRNA NEAT1. We reported that the levels of MRP-7 were significantly increased in EC tissues and associated with an unfavorable prognosis. Downregulation of MRP-7 in EC cells sensitized these cells to paclitaxel and reduced cell invasion. PLAUR serves as a downstream molecule of MRP-7 and facilitates paclitaxel resistance and EC cell invasiveness. Moreover, miR-98 serves as a tumor suppressor to inhibit MRP-7 expression, leading to the repression of paclitaxel resistance. Furthermore, a novel lncRNA, NEAT1, was identified as a suppressor of miR-98, and NEAT1 could upregulate MRP-7 levels by reducing the expression of miR-98. Taken together, these findings demonstrate that upregulation of MRP-7 and NEAT1, and downregulation of miR-98 have important roles in conferring paclitaxel resistance to EC cells. The modulation of these molecules may help overcome the chemoresistance against paclitaxel in EC cells.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Agustina Dwi Retno Nurcahyanti ◽  
Lia Kusmita ◽  
Michael Wink

Abstract Objective Cisplatin is a conventional anticancer drug that generates reactive oxygen species and causes apoptosis. However, many cancer cells develop alterations in the ATP binding cassette transporter responsible for the uptake and efflux process, which leads to resistance. Many natural products have shown potential to compete with ATP binding cassette transporter and may sensitize resistant cells to cisplatin. Studies have shown pro-oxidant effect of carotenoids that promote apoptosis of cancer cells. Bixin and fucoxanthin are well-known carotenoids with known antioxidant properties, however their bioactivity in lung cancer cells, clinically known to develop resistance due to ATP binding cassette transporter, has been minimally studied. This study is the first to investigate the potential of bixin and fucoxanthin to sensitize human lung cancer cell line, A549 and cervical cancer cell line, HeLa, to cisplatin. Drug combination method developed by Chou and Talalay theorem was employed. Result Employing the best combination ratio, this study shows selective sensitization of cancer cells to cisplatin after bixin and fucoxanthin treatment. Further study on the mechanism of action in specific types of cancer cells is warranted. It may improve cisplatin sensitivity in tumors and rational use of cancer drugs. Graphical Abstract


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 923
Author(s):  
Alessandro Barbieri ◽  
Nopnithi Thonghin ◽  
Talha Shafi ◽  
Stephen M. Prince ◽  
Richard F. Collins ◽  
...  

ABCB1/P-glycoprotein is an ATP binding cassette transporter that is involved in the clearance of xenobiotics, and it affects the disposition of many drugs in the body. Conformational flexibility of the protein within the membrane is an intrinsic part of its mechanism of action, but this has made structural studies challenging. Here, we have studied different conformations of P-glycoprotein simultaneously in the presence of ivacaftor, a known competitive inhibitor. In order to conduct this, we used high contrast cryo-electron microscopy imaging with a Volta phase plate. We associate the presence of ivacaftor with the appearance of an additional density in one of the conformational states detected. The additional density is in the central aqueous cavity and is associated with a wider separation of the two halves of the transporter in the inward-facing state. Conformational changes to the nucleotide-binding domains are also observed and may help to explain the stimulation of ATPase activity that occurs when transported substrate is bound in many ATP binding cassette transporters.


2021 ◽  
Author(s):  
Sanjoy Paul ◽  
Paul Bowyer ◽  
Michael John Bromley ◽  
W. Scott Moye-Rowley

The production of a collection of disruption mutant strains corresponding to a large number of transcription factors from the filamentous fungal pathogen Aspergillus fumigatus has permitted rapid identification of transcriptional regulators involved in a range of different processes. Here we characterize a gene designated ffmA (favors fermentative metabolism) as an C2H2-containing transcription factor that is required for azole drug resistance and normal growth. Loss of ffmA caused cells to exhibit significant defects in growth, either under untreated or azole-challenged conditions. Loss of FfmA caused a reduction in expression of the AbcG1 ATP-binding cassette transporter, previousy shown to contribute to azole resistance. Strikingly, overproduction of the AtrR transcription factor gene restored a wild-type growth phenotype to a ffmAD strain. Overexpression of AtrR also suppressed the defect in AbcG1 expression caused by loss of FfmA.  Replacement of the ffmA promoter with a doxycycline-repressible promoter restored near normal growth in the absence of doxycycline. Finally, chromatin immunoprecipitation experiments indicated that FfmA bound to its own promoter as well as to the abcG1 promoter. These data imply that FfmA and AtrR interact both with respect to abcG1 expression and also more broadly to regulate hyphal growth.


2021 ◽  
Author(s):  
Parul Sharma ◽  
Navneet Singh ◽  
Siddharth Sharma

The expression of ATP-binding cassette transporter (ABC transporters) has been reported in various tissues such as the lung, liver, kidney, brain and intestine. These proteins account for the efflux of different compounds and metabolites across the membrane, thus decreasing the concentration of the toxic compounds. ABC transporter genes play a vital role in the development of multidrug resistance, which is the main obstacle that hinders the success of chemotherapy. Preclinical and clinical trials have investigated the probability of overcoming drug-associated resistance and substantial toxicities. The focus has been put on several strategies to overcome multidrug resistance. These strategies include the development of modulators that can modulate ABC transporters. This knowledge can be translated for clinical oncology treatment in the future.


2021 ◽  
Vol 22 (21) ◽  
pp. 11458
Author(s):  
Rong Wang ◽  
Yantong Liu ◽  
Sheng Xu ◽  
Jie Li ◽  
Jiayu Zhou ◽  
...  

As a kind of Amaryllidaceae alkaloid which is accumulated in the species of Lycoris plants, lycorine has a range of physiological effects. The biosynthesis pathway of lycorine has been partly revealed, but the transport and accumulation mechanisms of lycorine have rarely been studied. In this study, an ATP-binding cassette (ABC) transporter from Lycoris aurea (L’Hér) Herb., namely LaABCB11, was cloned and functionally characterized. Heterologous expression showed that LaABCB11 transported lycorine in an outward direction, increased the tolerance of yeast cells to lycorine, and caused a lower lycorine accumulation in transformants than control or mutant in yeast. LaABCB11 is associated with the plasma membrane, and in situ hybridization indicated that LaABCB11 was mainly expressed in the phloem of leaves and bulbs, as well as in the cortical cells of roots. These findings suggest that LaABCB11 functions as a lycorine transport and it might be related to the translocation and accumulation of lycorine from the leaves and bulbs to the roots.


Sign in / Sign up

Export Citation Format

Share Document