The role of dendritic cells in immune responses against vaginal infection by herpes simplex virus type 2

2003 ◽  
Vol 5 (13) ◽  
pp. 1221-1230 ◽  
Author(s):  
Akiko Iwasaki
1999 ◽  
Vol 73 (1) ◽  
pp. 501-509 ◽  
Author(s):  
Jeong-Im Sin ◽  
Jong J. Kim ◽  
Jean D. Boyer ◽  
Richard B. Ciccarelli ◽  
Terry J. Higgins ◽  
...  

ABSTRACT Several vaccines have been investigated experimentally in the herpes simplex virus type 2 (HSV-2) model system. While it is believed that CD4+-T-cell responses are important for protection in general, the correlates of protection from HSV-2 infection are still under investigation. Recently, the use of molecular adjuvants to drive vaccine responses induced by DNA vaccines has been reported in a number of experimental systems. We sought to take advantage of this immunization model to gain insight into the correlates of immune protection in the HSV-2 mouse model system and to further explore DNA vaccine technology. To investigate whether the Th1- or Th2-type immune responses are more important for protection from HSV-2 infection, we codelivered the DNA expression construct encoding the HSV-2 gD protein with the gene plasmids encoding the Th1-type (interleukin-2 [IL-2], IL-12, IL-15, and IL-18) and Th2-type (IL-4 and IL-10) cytokines in an effort to drive immunity induced by vaccination. We then analyzed the modulatory effects of the vaccine on the resulting immune phenotype and on the mortality and the morbidity of the immunized animals following a lethal challenge with HSV-2. We observed that Th1 cytokine gene coadministration not only enhanced the survival rate but also reduced the frequency and severity of herpetic lesions following intravaginal HSV challenge. On the other hand, coinjection with Th2 cytokine genes increased the rate of mortality and morbidity of the challenged mice. Moreover, of the Th1-type cytokine genes tested, IL-12 was a particularly potent adjuvant for the gD DNA vaccination.


Blood ◽  
2011 ◽  
Vol 118 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Alexandros A. Theodoridis ◽  
Christina Eich ◽  
Carl G. Figdor ◽  
Alexander Steinkasserer

Abstract Immune responses require spatial and temporal coordinated interactions between different cell types within distinct microenvironments. This dynamic interplay depends on the competency of the involved cells, predominantly leukocytes, to actively migrate to defined sites of cellular encounters in various tissues. Because of their unique capacity to transport antigen from the periphery to secondary lymphoid tissues for the activation of naive T cells, dendritic cells (DCs) play a key role in the initiation and orchestration of adaptive immune responses. Therefore, pathogen-mediated interference with this process is a very effective way of immune evasion. CYTIP (cytohesin-interacting protein) is a key regulator of DC motility. It has previously been described to control LFA-1 deactivation and to regulate DC adherence. CYTIP expression is up-regulated during DC maturation, enabling their transition from the sessile to the motile state. Here, we demonstrate that on infection of human monocyte-derived DCs with herpes simplex virus type 1 (HSV-1), CYTIP is rapidly degraded and as a consequence β-2 integrins, predominantly LFA-1, are activated. Furthermore, we show that the impairment of migration in HSV-1-infected DCs is in part the result of this increased integrin-mediated adhesion. Thus, we propose a new mechanism of pathogen-interference with central aspects of leukocyte biology.


2017 ◽  
Vol 30 (8) ◽  
pp. 601-614 ◽  
Author(s):  
Yan Zhou ◽  
Ziyan Wang ◽  
Yongqing Xu ◽  
Zeqiang Zhang ◽  
Rui Hua ◽  
...  

2002 ◽  
Vol 76 (5) ◽  
pp. 2563-2566 ◽  
Author(s):  
Lydia G. Thebeau ◽  
Lynda A. Morrison

ABSTRACT We have used mice lacking both B7-1 and B7-2 costimulation molecules (B7KO) to investigate the effects of B7 costimulation on herpes simplex virus type 2 (HSV-2) pathogenesis. B7KO mice infected intravaginally with virulent HSV-2 showed more severe genital and neurologic disease and higher mortality rates than their wild-type counterparts. These results suggest that B7 costimulation molecules play an important role in the development of primary immune responses protective against HSV-2.


Sign in / Sign up

Export Citation Format

Share Document