Molecular modeling of carbon dioxide transport and storage in porous carbon-based materials

2012 ◽  
Vol 158 ◽  
pp. 195-203 ◽  
Author(s):  
Mahnaz Firouzi ◽  
Jennifer Wilcox
2014 ◽  
Vol 2 (12) ◽  
pp. 2837-2844 ◽  
Author(s):  
Jiang Gong ◽  
Beata Michalkiewicz ◽  
Xuecheng Chen ◽  
Ewa Mijowska ◽  
Jie Liu ◽  
...  

2014 ◽  
Vol 1036 ◽  
pp. 975-980 ◽  
Author(s):  
Teodor Popa ◽  
Ovidiu Sorin Cupsa

Increased focus on reducing CO2 emissions has created growing interest in CO2 capture from industrial processes for storage in underground formations. New technical solutions, costs and energy requirements for ship-based transport of CO2 are presented. All elements in the transport chain, namely liquefaction, storage, loading system, dedicated CO2 ship (s), onshore loading and unloading, and offshore unloading systems are included in the paper. Over 80 % from the primary energy consumed all over the world is obtained from fossil oil and natural gas. The last researches have shown the energy dependences of these types of fuels. The transition to the economy based on the low influence of the carbon, the carbon capture technology, is the main means to reconsider the fossil fuels for meeting the needs for reduction of negative emissions. This is necessary for keeping the world temperature at normal levels. The main target of this paper is to put highlight the negative effect of CO2 emissions and the interest in recovery of carbon dioxide from flue gases trough multiple factors: the merchant CO2 market, renewed interest in enhanced oil recovery, and the desire to reduce greenhouse gas emissions. It also takes in account modalities of transport and storage of CO2. Solutions for CO2 capture and injection into caverns instead of natural deposits were found worldwide. These solutions are not applicable however all over the world and they are not a priority in the environment protection activity.Another important aspect calls for all merchant ships requirements regarding CO2 emissions through index calculation and development of Management Plan. Also, to increase the control of CO2 it would be useful to identify the caverns where it is possible to deposit the CO2, to build new special ship for CO2 transport or replace natural deposits through CO2 injection.


2019 ◽  
Vol 174 ◽  
pp. 69-79 ◽  
Author(s):  
Mohammad Al-Wabel ◽  
Jamal Elfaki ◽  
Adel Usman ◽  
Qaiser Hussain ◽  
Yong Sik Ok

2021 ◽  
Author(s):  
Zuozhong Liang ◽  
Hong-Yan Wang ◽  
Haoquan Zheng ◽  
Wei Zhang ◽  
Rui Cao

The recent progress made on porphyrin-based frameworks and their applications in energy-related conversion technologies (e.g., ORR, OER and CO2RR) and storage technologies (e.g., Zn–air batteries).


Sign in / Sign up

Export Citation Format

Share Document