Integrated acid leaching and biological sulfate reduction of phosphogypsum for REE recovery

2020 ◽  
Vol 155 ◽  
pp. 106408 ◽  
Author(s):  
Marja Salo ◽  
Oleg Knauf ◽  
Jarno Mäkinen ◽  
Xiaosheng Yang ◽  
Pertti Koukkari
2013 ◽  
Vol 67 (2) ◽  
pp. 311-318 ◽  
Author(s):  
Madawala Liyanage Duminda Jayaranjan ◽  
Ajit P. Annachhatre

Investigations were undertaken to utilize flue gas desulfurization (FGD) gypsum for the treatment of leachate from the coal ash (CA) dump sites. Bench-scale investigations consisted of three main steps namely hydrogen sulfide (H2S) production by sulfate reducing bacteria (SRB) using sulfate from solubilized FGD gypsum as the electron acceptor, followed by leaching of heavy metals (HMs) from coal bottom ash (CBA) and subsequent precipitation of HMs using biologically produced sulfide. Leaching tests of CBA carried out at acidic pH revealed the existence of several HMs such as Cd, Cr, Hg, Pb, Mn, Cu, Ni and Zn. Molasses was used as the electron donor for the biological sulfate reduction (BSR) process which produced sulfide rich effluent with concentration up to 150 mg/L. Sulfide rich effluent from the sulfate reduction process was used to precipitate HMs as metal sulfides from CBA leachate. HM removal in the range from 40 to 100% was obtained through sulfide precipitation.


Chemosphere ◽  
2019 ◽  
Vol 236 ◽  
pp. 124246 ◽  
Author(s):  
Shahrokh Shahsavari ◽  
Rajesh Seth ◽  
Subba Rao Chaganti ◽  
Nihar Biswas

2007 ◽  
Vol 25 (5) ◽  
pp. 452-463 ◽  
Author(s):  
Warounsak Liamleam ◽  
Ajit P. Annachhatre

2013 ◽  
Vol 146 ◽  
pp. 799-802 ◽  
Author(s):  
Huawei Wang ◽  
Fulong Chen ◽  
Shuyong Mu ◽  
Daoyong Zhang ◽  
Xiangliang Pan ◽  
...  

2007 ◽  
Vol 20-21 ◽  
pp. 197-200 ◽  
Author(s):  
Anke Wolthoorn ◽  
Simon Kuitert ◽  
Henk Dijkman ◽  
Jacco L. Huisman

In a bench scale trial biological sulfate reduction was applied to convert anglesite (PbSO4) to galena (PbS). Anglesite is a main constituent of waste fractions such as the residue from an indirect leaching process or in lead paste from spent car batteries. The goal of this study was to develop a technology to decrease the lead (Pb) emissions by converting PbSO4 from a waste fraction into PbS, which can be recovered from the waste fraction using a flotation process or an electrochemical process. The conversion of anglesite to galena is based on the biological sulfate reduction process and a metal precipitation process. First sulfate is biologically reduced to sulfide. Secondly, the Pb2+ from the PbSO4 reacts chemically with the sulfide resulting from the first reaction. A bench-scale reactor was started up using sulfate- and sulfur-containing influent. The reactor was seeded with biocatalyst from several full-scale reactors. Anglesite-containing residue was added batch-wise when the formation of sulfide started. The residue contained mainly PbSO4 (51.7%), sulfate (SO4 2-, 19.9%) and elemental sulfur (S0, 15.1%). Galena precipitates in the bioreactor due to the near-neutral pH at which sulfate reduction is carried out. During the experiment a surplus of sulfide relative to Pb was maintained to prevent the formation of PbCO3 and the accompanying pH decrease that would unavoidable result in the inhibition of the biocatalyst. Both sulfate and sulfur present in the residue were biologically reduced. The formation of PbS was confirmed by the increased Pb:O ratio of the sludge (1:0.03) relative to the Pb:O ratio of the residue (1:0.3). A potential large-scale application is proposed.


Sign in / Sign up

Export Citation Format

Share Document