biological sulfate reduction
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 16)

H-INDEX

15
(FIVE YEARS 4)

Author(s):  
Hanna Virpiranta ◽  
Sanna Taskila ◽  
Tiina Leiviskä ◽  
Jouko Vepsäläinen ◽  
Jaakko Rämö ◽  
...  

Abstract The main goal of this study was to develop a cost-efficient biological method for the removal of sulfate from mining effluents in cold conditions. A consortium of cold-tolerant sulfate-reducing bacteria (SRB) was tested at 6 °C regarding the utilization of economically viable, low-cost carbon sources, i.e., whey, conditioned sewage sludge, and peat, in the removal of sulfate from synthetic mining water. Succinate was used as a reference carbon source. Of all the studied low-cost carbon sources, conditioned sewage sludge proved to be the most efficient. Nuclear magnetic resonance (NMR) spectroscopy revealed that sewage sludge contained propionic acid, which proved to be utilizable by SRB under cold conditions. Peat both adsorbed the sulfate and acted as a nutrient source in the sulfate reduction process. When whey was used as a carbon source, only a slight decrease in sulfate concentration was detected. Succinate was found to work in a truly predictable and efficient way as a carbon source in biological sulfate reduction, even at the lowest concentration tested. The use of conditioned sewage sludge increased the bacterial diversity in liquid cultivations significantly. However, the number of SRB was highest in the succinate cultivations.


2021 ◽  
Author(s):  
Tomas Hessler ◽  
Susan T.L. Harrison ◽  
Jillian F. Banfield ◽  
Robert J. Huddy

Biological sulfate reduction (BSR) represents a promising bioremediation strategy, yet the impact of metabolic interactions on performance has been largely unexplored. Here, genome-resolved metagenomics was used to characterise 17 microbial communities associated with reactors operated with defined sulfate-contaminated solutions. Pairs of reactors were supplemented with lactate or with acetate plus a small amount of fermentable substrate. At least thirty draft quality genomes, representing all the abundant bacteria, were recovered from each metagenome. All of the 22 SRB genomes encode genes for H2 consumption. And of the total 163 genomes recovered, 130 encode 321 NiFe and FeFe hydrogenases. The lactate-supplemented packed-bed bioreactor was particularly interesting as it resulted in stratified microbial communities that were distinct in their predominant metabolisms. Pathways for fermentation of lactate and hydrogen production were enriched towards the inlet whereas increased autotrophy and acetate-oxidizing SRB were evident towards the end of the flow path. We hypothesized that high sulfate removal towards the end of the flow path, despite acetate being an electron donor that typically sustains low SRB growth rates, was stimulated by H2 consumption. This hypothesis was supported by sustained performance of the predominantly acetate-supplemented stirred-tank reactor, which was dominated by diverse fermentative, hydrogen-evolving bacteria and low-abundance SRB capable of acetate and hydrogen consumption. We conclude that the performance of BSR reactors supplemented with inexpensive acetate can be improved by the addition of a low concentration of fermentable material due to stimulation of syntrophic relationships among hydrogen-producing non-SRB and dual hydrogen- and acetate-utilising SRB.


2020 ◽  
Vol 155 ◽  
pp. 106408 ◽  
Author(s):  
Marja Salo ◽  
Oleg Knauf ◽  
Jarno Mäkinen ◽  
Xiaosheng Yang ◽  
Pertti Koukkari

Chemosphere ◽  
2020 ◽  
Vol 252 ◽  
pp. 126570 ◽  
Author(s):  
Su Yan ◽  
Ka Yu Cheng ◽  
Christina Morris ◽  
Grant Douglas ◽  
Maneesha P. Ginige ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document