Gas phase photocatalytic oxidation of toluene using highly active Pt doped TiO2

2010 ◽  
Vol 320 (1-2) ◽  
pp. 14-18 ◽  
Author(s):  
G. Colón ◽  
M. Maicu ◽  
M.C. Hidalgo ◽  
J.A. Navío ◽  
A. Kubacka ◽  
...  
2021 ◽  
Vol 291 ◽  
pp. 129538
Author(s):  
Zhaopeng Zhang ◽  
Xian Li ◽  
Dayong Guan ◽  
Yingchao Gao ◽  
Jiang Wu ◽  
...  

2008 ◽  
Vol 9 (9) ◽  
pp. 1941-1944 ◽  
Author(s):  
Zhongyi Sheng ◽  
Zhongbiao Wu ◽  
Yue Liu ◽  
Haiqiang Wang

Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 403
Author(s):  
Armelle Sengele ◽  
Didier Robert ◽  
Nicolas Keller ◽  
Valérie Keller

In the context of the increase in chemical threat due to warfare agents, the development of efficient methods for destruction of Chemical Warfare Agents (CWAs) are of first importance both for civilian and military purposes. Amongst possible methods for destruction of CWAs, photocatalytic oxidation is an alternative one. The present paper reports on the preparation of Ta and Sn doped TiO2 photocatalysts immobilized on β-SiC foams for the elimination of diethyl sulfide (DES) used as a model molecule mimicking Yperite (Mustard Gas) in gaseous phase. Photo-oxidation efficiency of doped TiO2 catalyst has been compared with TiO2-P25. Here, we demonstrate that the Sn doped-TiO2 with a Polyethylene glycol (PEG)/TiO2 ratio of 7 exhibits the best initial activity (up to 90%) but is deactivates more quickly than Ta doped-TiO2 (40% after 800 min). The activity of the catalysts is strongly influenced by the adsorption properties of the support, as β-SiC foams adsorb DES and other sulfur compounds. This adsorption makes it possible to limit the poisoning of the catalysts and to maintain an acceptable conversion rate even after ten hours under continuous DES flow. Washing with NaOH completely regenerates the catalyst after a firs treatment and even seems to “wash” it by removing impurities initially present on the foams.


2004 ◽  
Vol 52 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Nuria González-Garcı́a ◽  
José A Ayllón ◽  
Xavier Doménech ◽  
José Peral

2008 ◽  
Vol 42 (34) ◽  
pp. 7844-7850 ◽  
Author(s):  
Aikaterini K. Boulamanti ◽  
Christos A. Korologos ◽  
Constantine J. Philippopoulos

2017 ◽  
Vol 46 ◽  
pp. 416-425 ◽  
Author(s):  
Jiang Wu ◽  
Chaoen Li ◽  
Xiantuo Chen ◽  
Jing Zhang ◽  
Lili Zhao ◽  
...  

2012 ◽  
Vol 84 (3) ◽  
pp. 495-508 ◽  
Author(s):  
Ekaterina S. Lokteva ◽  
Anton A. Peristyy ◽  
Natalia E. Kavalerskaya ◽  
Elena V. Golubina ◽  
Lada V. Yashina ◽  
...  

Laser electrodispersion (LED) of metals is a promising technique for the preparation of heterogeneous catalysts as an alternative to wet impregnation of supports with the corresponding salt solutions. The LED technique can be used to deposit highly active chloride- and nitrate-free metal nanoparticles onto carbon or oxide supports. We report preparation and properties of new Ni-, Pd-, and Au-containing alumina-supported catalysts with low metal loadings (10–3–10–4 % mass) and their comparison with the previously studied carbon (Sibunit) supported systems. The catalysts demonstrate high stability and extremely high specific catalytic activity (by 2–3 orders of magnitude higher than for traditional catalysts) in the gas-phase hydrodechlorination (HDC) of chlorobenzene (CB).


Sign in / Sign up

Export Citation Format

Share Document