chemical warfare agent
Recently Published Documents


TOTAL DOCUMENTS

462
(FIVE YEARS 121)

H-INDEX

42
(FIVE YEARS 8)

2021 ◽  
pp. 152225
Author(s):  
Youna Kim ◽  
Moonhyun Choi ◽  
Jiwoong Heo ◽  
Sungwon Jung ◽  
Dongwon Ka ◽  
...  

Author(s):  
Bradley Gibbons ◽  
Eamon C. Bartlett ◽  
Meng Cai ◽  
Xiaozhou Yang ◽  
Eric M. Johnson ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258503
Author(s):  
Dinesh G. Goswami ◽  
Neha Mishra ◽  
Rama Kant ◽  
Chapla Agarwal ◽  
Claire R. Croutch ◽  
...  

Sulfur mustard (SM) is a cytotoxic, vesicating, chemical warfare agent, first used in 1917; corneas are particularly vulnerable to SM exposure. They may develop inflammation, ulceration, neovascularization (NV), impaired vision, and partial/complete blindness depending upon the concentration of SM, exposure duration, and bio-physiological conditions of the eyes. Comprehensive in vivo studies have established ocular structural alterations, opacity, NV, and inflammation upon short durations (<4 min) of SM exposure. In this study, detailed analyses of histopathological alterations in corneal structure, keratocytes, inflammatory cells, blood vessels, and expressions of cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-9, vascular endothelial growth factor (VEGF), and cytokines were performed in New Zealand white rabbits, in a time-dependent manner till 28 days, post longer durations (5 and 7 min) of ocular SM exposure to establish quantifiable endpoints of injury and healing. Results indicated that SM exposure led to duration-dependent increases in corneal thickness, opacity, ulceration, epithelial-stromal separation, and epithelial degradation. Significant increases in NV, keratocyte death, blood vessels, and inflammatory markers (COX-2, MMP-9, VEGF, and interleukin-8) were also observed for both exposure durations compared to the controls. Collectively, these findings would benefit in temporal delineation of mechanisms underlying SM-induced corneal toxicity and provide models for testing therapeutic interventions.


2021 ◽  
Vol 11 (1) ◽  
pp. 105-110
Author(s):  
Dung Le Van ◽  
Phuong Dang Tuyet ◽  
Trinh Nguyen Duy ◽  
Manh Nguyen Ba

TiO2 and ZrO2 nanomaterials were successfully synthesized by sol gel method. Samples were characterized by X-ray difraction (XRD), Fourier-transform infrared spectroscopy (FTIR), N2 adsorption–desorption, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS),  SEM images and TEM images of TiO2 and ZrO2 samples showed the particle size of 10–20 nm. The results have revealed highly porous structure of ZrO2 and TiO2 nanomaterials with specific surface area of 116 m2g-1 and 125 m2g-1, respectively. The TiO2 and ZrO2 materials were used as the degradation of dimethyl 4-nitrophenyl phosphate (DMNP) chemical warfare agent emulator. The ZrO2 nanomaterial exhibited highly catalytic performance of DMNP degradation and the conversion reached to the value of 90.64 %, after 120 min of reaction.


2021 ◽  
pp. 2100001
Author(s):  
Agnieszka Gorzkowska‐Sobas ◽  
Kristian Blindheim Lausund ◽  
Martijn C. Koning ◽  
Veljko Petrovic ◽  
Sachin M. Chavan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document