scholarly journals Structure of a 14-3-3 Coordinated Hexamer of the Plant Plasma Membrane H+-ATPase by Combining X-Ray Crystallography and Electron Cryomicroscopy

2007 ◽  
Vol 25 (3) ◽  
pp. 427-440 ◽  
Author(s):  
Christian Ottmann ◽  
Sergio Marco ◽  
Nina Jaspert ◽  
Caroline Marcon ◽  
Nicolas Schauer ◽  
...  
Author(s):  
Amit Singer

The power spectrum of proteins at high frequencies is remarkably well described by the flat Wilson statistics. Wilson statistics therefore plays a significant role in X-ray crystallography and more recently in electron cryomicroscopy (cryo-EM). Specifically, modern computational methods for three-dimensional map sharpening and atomic modelling of macromolecules by single-particle cryo-EM are based on Wilson statistics. Here the first rigorous mathematical derivation of Wilson statistics is provided. The derivation pinpoints the regime of validity of Wilson statistics in terms of the size of the macromolecule. Moreover, the analysis naturally leads to generalizations of the statistics to covariance and higher-order spectra. These in turn provide a theoretical foundation for assumptions underlying the widespread Bayesian inference framework for three-dimensional refinement and for explaining the limitations of autocorrelation-based methods in cryo-EM.


1998 ◽  
Vol 8 (4) ◽  
pp. 191-198 ◽  
Author(s):  
Frank Kozielski ◽  
Isabelle Arnal ◽  
Richard H. Wade

2019 ◽  
Author(s):  
Halil I Ciftci ◽  
Raymond G Sierra ◽  
Chun Hong Yoon ◽  
Zhen Su ◽  
Hiroshi Tateishi ◽  
...  

AbstractThe Human immunodeficiency virus-1 (HIV-1) matrix (MA) domain is involved in the highly regulated assembly process of the virus particles that occur at the host cell’s plasma membrane. High-resolution structures of the MA domain determined using cryo X- ray crystallography have provided initial insights into the possible steps in the viral assembly process. However, these structural studies have relied on large and frozen crystals in order to reduce radiation damage caused by the intense X-rays. Here, we report the first XFEL study of the HIV-1 MA domain’s interaction with inositol hexaphosphate (IP6), a phospholipid headgroup mimic. We also describe the purification, characterization and microcrystallization of two MA crystal forms obtained in the presence of IP6. In addition, we describe the capabilities of serial femtosecond X-ray crystallography (SFX) using X-ray free-electron laser (XFEL) to elucidate the diffraction data of MA-IP6 complex microcrystals in liquid suspension at ambient temperature. Two different microcrystal forms of MA-IP6 complex both diffracted to beyond 3.5 Å resolution, demonstrating the feasibility of using SFX to study the complexes of MA domain of HIV-1 Gag polyprotein with IP6 at near-physiological temperatures. Further optimization of the experimental and data analysis procedures will lead to better understanding of the MA domain of HIV-1 Gag and IP6 interaction at high resolution and provide basis for optimization of the lead compounds for efficient inhibition of the Gag protein recruitment to the plasma membrane prior to virion formation.


Structure ◽  
1997 ◽  
Vol 5 (7) ◽  
pp. 885-893 ◽  
Author(s):  
Jonathan M Grimes ◽  
Joanita Jakana ◽  
Mrinal Ghosh ◽  
Ajit K Basak ◽  
Polly Roy ◽  
...  

2005 ◽  
Vol 86 (8) ◽  
pp. 2339-2346 ◽  
Author(s):  
Joan Pous ◽  
Christophe Chevalier ◽  
Malika Ouldali ◽  
Jorge Navaza ◽  
Bernard Delmas ◽  
...  

Birnaviruses possess a capsid with a single protein layer in contrast to most double-stranded RNA viruses infecting multicellular eukaryotes. Using freeze-drying and heavy metal shadowing, the capsids of two birnaviruses, infectious bursal disease virus (IBDV) and infectious pancreatic necrosis virus, as well as of an IBDV virus-like particle (VLP) are shown to follow the same T=13 laevo icosahedral geometry. The structure of the VLP was determined at a resolution of approximately 15 Å (1·5 nm) by a combination of electron cryomicroscopy and a recently developed three-dimensional reconstruction method, where the scattering density is expressed in terms of symmetry-adapted functions. This reconstruction methodology is well adapted to the icosahedral symmetry of viruses and only requires a small number of images to analyse. The atomic model of the external capsid protein, VP2, recently determined by X-ray crystallography, fits well into the VLP reconstruction and occupies all the electron densities present in the map. Thus, similarly to the IBDV virion, only VP2 forms the icosahedral layer of the VLP. The other components of both VLP and IBDV particles that play a crucial role in the capsid assembly, VP1, VP3 and the peptides arising from the processing of pVP2, do not follow the icosahedral symmetry, allowing them to be involved in other processes such as RNA packaging.


Sign in / Sign up

Export Citation Format

Share Document