secondary active transport
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 2)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Maike Cosse ◽  
Thorsten Seidel

Proton pumps create a proton motif force and thus, energize secondary active transport at the plasma nmembrane and endomembranes of the secretory pathway. In the plant cell, the dominant proton pumps are the plasma membrane ATPase, the vacuolar pyrophosphatase (V-PPase), and the vacuolar-type ATPase (V-ATPase). All these pumps act on the cytosolic pH by pumping protons into the lumen of compartments or into the apoplast. To maintain the typical pH and thus, the functionality of the cytosol, the activity of the pumps needs to be coordinated and adjusted to the actual needs. The cellular toolbox for a coordinated regulation comprises 14-3-3 proteins, phosphorylation events, ion concentrations, and redox-conditions. This review combines the knowledge on regulation of the different proton pumps and highlights possible coordination mechanisms.


2020 ◽  
Vol 152 (12) ◽  
Author(s):  
Dylan J. Meyer ◽  
Sharan Bijlani ◽  
Marilina de Sautu ◽  
Kerri Spontarelli ◽  
Victoria C. Young ◽  
...  

Tight regulation of the Na/K pump is essential for cellular function because this heteromeric protein builds and maintains the electrochemical gradients for Na+ and K+ that energize electrical signaling and secondary active transport. We studied the regulation of the ubiquitous human α1β1 pump isoform by five human FXYD proteins normally located in muscle, kidney, and neurons. The function of Na/K pump α1β1 expressed in Xenopus oocytes with or without FXYD isoforms was evaluated using two-electrode voltage clamp and patch clamp. Through evaluation of the partial reactions in the absence of K+ but presence of Na+ in the external milieu, we demonstrate that each FXYD subunit alters the equilibrium between E1P(3Na) and E2P, the phosphorylated conformations with Na+ occluded and free from Na+, respectively, thereby altering the apparent affinity for Na+. This modification of Na+ interaction shapes the small effects of FXYD proteins on the apparent affinity for external K+ at physiological Na+. FXYD6 distinctively accelerated both the Na+-deocclusion and the pump-turnover rates. All FXYD isoforms altered the apparent affinity for intracellular Na+ in patches, an effect that was observed only in the presence of intracellular K+. Therefore, FXYD proteins alter the selectivity of the pump for intracellular ions, an effect that could be due to the altered equilibrium between E1 and E2, the two major pump conformations, and/or to small changes in ion affinities that are exacerbated when both ions are present. Lastly, we observed a drastic reduction of Na/K pump surface expression when it was coexpressed with FXYD1 or FXYD6, with the former being relieved by injection of PKA's catalytic subunit into the oocyte. Our results indicate that a prominent effect of FXYD1 and FXYD6, and plausibly other FXYDs, is the regulation of Na/K pump trafficking.


2018 ◽  
Author(s):  
Vikas Navratna ◽  
Dilip K. Tosh ◽  
Kenneth A. Jacobson ◽  
Eric Gouaux

AbstractThe human dopamine transporter(hDAT) plays a major role in dopamine homeostasis and regulation of neurotransmission by clearing dopamine from the extracellular space using secondary active transport. Dopamine is an essential monoamine chemical messenger that regulates reward seeking behavior, motor control, hormonal release, and emotional response in humans. Psychostimulants such as cocaine primarily target the central binding site of hDAT and lock the transporter in an outward-facing conformation, thereby inhibiting dopamine reuptake. The inhibition of dopamine reuptake leads to accumulation of dopamine in the synapse causing heightened signaling. In addition, hDAT is implicated in various neurological disorders and disease-associated neurodegeneration. Despite its significance, the molecular architecture of hDAT and its various conformational states are poorly understood. Instability of hDAT in detergent micelles has been a limiting factor in its successful biochemical, biophysical, and structural characterization. To overcome this hurdle, first we identified ligands that stabilize hDAT in detergent micelles. Then, we screened ∼200 single residue mutants of hDAT using high-throughput scintillation proximity assay, and identified a thermostable variant(I248Y). Here we report a robust strategy to overexpress and successfully purify a thermostable variant of hDAT in an inhibitor and allosteric ligand bound conformation.


2016 ◽  
Vol 110 (3) ◽  
pp. 135a-136a
Author(s):  
Maureen Leninger ◽  
Anindita Gayen ◽  
Nathaniel Traaseth

2016 ◽  
Vol 3 (4) ◽  
pp. 479-500
Author(s):  
Michèle Siek ◽  
◽  
Berenice Marg ◽  
Chris M. Ehring ◽  
Derya Kirasi ◽  
...  

Author(s):  
Gordon S. Lynch ◽  
David G. Harrison ◽  
Hanjoong Jo ◽  
Charles Searles ◽  
Philippe Connes ◽  
...  

2011 ◽  
Vol 1807 (2) ◽  
pp. 167-188 ◽  
Author(s):  
Lucy R. Forrest ◽  
Reinhard Krämer ◽  
Christine Ziegler

Sign in / Sign up

Export Citation Format

Share Document