scholarly journals TOM9.2 Is a Calmodulin-Binding Protein Critical for TOM Complex Assembly but Not for Mitochondrial Protein Import in Arabidopsis thaliana

2017 ◽  
Vol 10 (4) ◽  
pp. 575-589 ◽  
Author(s):  
Nargis Parvin ◽  
Chris Carrie ◽  
Isabelle Pabst ◽  
Antonia Läßer ◽  
Debabrata Laha ◽  
...  
2004 ◽  
Vol 279 (44) ◽  
pp. 45701-45707 ◽  
Author(s):  
Masatoshi Esaki ◽  
Hidaka Shimizu ◽  
Tomoko Ono ◽  
Hayashi Yamamoto ◽  
Takashi Kanamori ◽  
...  

Protein translocation across the outer mitochondrial membrane is mediated by the translocator called the TOM (translocase of the outer mitochondrial membrane) complex. The TOM complex possesses two presequence binding sites on the cytosolic side (thecissite) and on the intermembrane space side (thetranssite). Here we analyzed the requirement of presequence elements and subunits of the TOM complex for presequence binding to thecisandtranssites of the TOM complex. The N-terminal 14 residues of the presequence of subunit 9 of F0-ATPase are required for binding to thetranssite. The interaction between the presequence and thecissite is not sufficient to anchor the precursor protein to the TOM complex. Tom7 constitutes or is close to thetranssite and has overlapping functions with the C-terminal intermembrane space domain of Tom22 in the mitochondrial protein import.


2010 ◽  
Vol 21 (18) ◽  
pp. 3106-3113 ◽  
Author(s):  
Thomas Becker ◽  
Bernard Guiard ◽  
Nicolas Thornton ◽  
Nicole Zufall ◽  
David A. Stroud ◽  
...  

The preprotein translocase of the outer mitochondrial membrane (TOM) consists of a central β-barrel channel, Tom40, and six proteins with α-helical transmembrane segments. The precursor of Tom40 is imported from the cytosol by a pre-existing TOM complex and inserted into the outer membrane by the sorting and assembly machinery (SAM). Tom40 then assembles with α-helical Tom proteins to the mature TOM complex. The outer membrane protein Mim1 promotes membrane insertion of several α-helical Tom proteins but also affects the biogenesis of Tom40 by an unknown mechanism. We have identified a novel intermediate in the assembly pathway of Tom40, revealing a two-stage interaction of the precursor with the SAM complex. The second SAM stage represents assembly of Tom5 with the precursor of Tom40. Mim1-deficient mitochondria accumulate Tom40 at the first SAM stage like Tom5-deficient mitochondria. Tom5 promotes formation of the second SAM stage and thus suppresses the Tom40 assembly defect of mim1Δ mitochondria. We conclude that the assembly of newly imported Tom40 is directly initiated at the SAM complex by its association with Tom5. The involvement of Mim1 in Tom40 biogenesis can be largely attributed to its role in import of Tom5.


2000 ◽  
Vol 276 (3) ◽  
pp. 1028-1034 ◽  
Author(s):  
Khaleque Md. Abdul ◽  
Kazutoyo Terada ◽  
Masato Yano ◽  
Michael T. Ryan ◽  
Illo Streimann ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 432
Author(s):  
Hope I. Needs ◽  
Margherita Protasoni ◽  
Jeremy M. Henley ◽  
Julien Prudent ◽  
Ian Collinson ◽  
...  

The fact that >99% of mitochondrial proteins are encoded by the nuclear genome and synthesised in the cytosol renders the process of mitochondrial protein import fundamental for normal organelle physiology. In addition to this, the nuclear genome comprises most of the proteins required for respiratory complex assembly and function. This means that without fully functional protein import, mitochondrial respiration will be defective, and the major cellular ATP source depleted. When mitochondrial protein import is impaired, a number of stress response pathways are activated in order to overcome the dysfunction and restore mitochondrial and cellular proteostasis. However, prolonged impaired mitochondrial protein import and subsequent defective respiratory chain function contributes to a number of diseases including primary mitochondrial diseases and neurodegeneration. This review focuses on how the processes of mitochondrial protein translocation and respiratory complex assembly and function are interlinked, how they are regulated, and their importance in health and disease.


2019 ◽  
Author(s):  
Kyle Tucker ◽  
Eunyong Park

AbstractNearly all mitochondrial proteins are encoded by the nuclear genome and imported into mitochondria following synthesis on cytosolic ribosomes. These precursor proteins are translocated into mitochondria by the TOM complex, a protein-conducting channel in the mitochondrial outer membrane. Using cryo-EM, we have obtained high-resolution structures of both apo and presequence-bound core TOM complexes from Saccharomyces cerevisiae in dimeric and tetrameric forms. Dimeric TOM consists of two copies each of five proteins arranged in two-fold symmetry—Tom40, a pore-forming β-barrel with an overall negatively-charged inner surface, and four auxiliary α-helical transmembrane proteins. The structure suggests that presequences for mitochondrial targeting insert into the Tom40 channel mainly by electrostatic and polar interactions. The tetrameric complex is essentially a dimer of dimeric TOM, which may be capable of forming higher-order oligomers. Our study reveals the molecular organization of the TOM complex and provides new insights about the mechanism of protein translocation into mitochondria.


2017 ◽  
Author(s):  
Vicki A. M. Gold ◽  
Piotr Chroscicki ◽  
Piotr Bragoszewski ◽  
Agnieszka Chacinska

AbstractBy electron cryo-tomography and subtomogram averaging, translation-arrested ribosomes were used to depict the clustered organisation of the TOM complex on the surface of mitochondria, corroborating earlier reports of localized translation. Ribosomes were shown to interact specifically with the TOM complex and nascent chain binding was crucial for ribosome recruitment and stabilization. Ribosomes were bound to the membrane in discrete clusters, often in the vicinity of the crista junctions. This interaction highlights how protein synthesis may be coupled with transport, and the importance of spatial organization for efficient mitochondrial protein import.


Sign in / Sign up

Export Citation Format

Share Document