cytosolic side
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 23)

H-INDEX

27
(FIVE YEARS 2)

Author(s):  
Alican Gulsevin ◽  
Andrew M Glazer ◽  
Tiffany Shields ◽  
Brett M Kroncke ◽  
Dan M Roden ◽  
...  

The cardiac sodium ion channel (NaV1.5) is a protein with four domains (DI-DIV), each with six transmembrane segments. Its opening and subsequent inactivation results in the brief rapid influx of Na+ ions resulting in the depolarization of cardiomyocytes. The neurotoxin veratridine (VTD) inhibits NaV1.5 inactivation resulting in longer channel opening times, and potentially fatal action potential prolongation. VTD is predicted to bind at the channel pore, but alternative binding sites have not been ruled out. To determine the binding site of VTD on NaV1.5, we performed docking calculations and high-throughput electrophysiology experiments. The docking calculations identified two distinct binding regions. The first site was in the pore, close to the binding site of NaV1.4 and NaV1.5 blocking drugs in experimental structures. The second site was at the “mouth” of the pore at the cytosolic side, partly solvent-exposed. Mutations at this site (L409, E417, and I1466) had large effects on VTD binding, while residues deeper in the pore had no effect, consistent with VTD binding at the mouth site. Overall, our results suggest a VTD binding site close to the cytoplasmic mouth of the channel pore. Binding at this alternative site might indicate an allosteric inactivation mechanism for VTD at NaV1.5.


2021 ◽  
Author(s):  
Ved Mehta ◽  
Basavraj Khanppnavar ◽  
Dina Schuster ◽  
Irene Vercellino ◽  
Angela Kosturanova ◽  
...  

AbstractMycobacterium tuberculosis adenylyl cyclase (AC) Cya is an evolutionary ancestor of the mammalian membrane ACs and a model system for studies of their structure and function. Although the vital role of ACs in cellular signaling is well established, the function of their transmembrane (TM) regions remains unknown. Here we describe the cryo-EM structure of Cya bound to a stabilizing nanobody at 3.6 Å resolution. The TM helices 1-5 form a structurally conserved domain that facilitates the assembly of the helical and catalytic domains. The TM region contains discrete pockets accessible from the extracellular and cytosolic side of the membrane. Neutralization of the negatively charged extracellular pocket Ex1 destabilizes the cytosolic helical domain and reduces the catalytic activity of the enzyme. The TM domain acts as a functional component of Cya, guiding the assembly of the catalytic domain and providing the means for direct regulation of catalytic activity in response to extracellular ligands.One-Sentence SummaryCryo-EM structure of M. tuberculosis adenylyl cyclase Cya provides clues to the role of its transmembrane domain


2021 ◽  
Vol 134 (19) ◽  
Author(s):  
Sophie Dittmer ◽  
Tatjana Kleine ◽  
Serena Schwenkert

ABSTRACT Molecular chaperones play an important role during the response to different stresses. Since plants are sessile organisms, they need to be able to adapt quickly to different conditions. To do so, plants possess a complex chaperone machinery, composed of HSP70, HSP90, J proteins and other factors. In this study we characterized DJC31 (also known as TPR16) and DJC62 (also known as TPR15) of Arabidopsis thaliana, two J proteins that additionally carry clamp-type tetratricopeptide repeat domains. Using cell fractionation and split GFP, we could show that both proteins are attached to the cytosolic side of the endoplasmic reticulum membrane. Moreover, an interaction with cytosolic HSP70.1 and HSP90.2 could be shown using bimolecular fluorescence complementation. Knockout of both DJC31 and DJC62 caused severe defects in growth and development, which affected almost all organs. Furthermore, it could be shown that the double mutant is more sensitive to osmotic stress and treatment with abscisic acid, but surprisingly exhibited enhanced tolerance to drought. Taken together, these findings indicate that DJC31 and DJC62 might act as important regulators of chaperone-dependent signaling pathways involved in plant development and stress responses.


Biology Open ◽  
2021 ◽  
Author(s):  
Jacqueline T. Brown ◽  
Alexandra J. Haraczy ◽  
Christopher M. Wilhelm ◽  
Kenneth D. Belanger

Pom152 is a transmembrane protein within the nuclear pore complex (NPC) of fungi that is important for NPC assembly and structure. Pom152 is comprised of a short amino-terminal region that remains on the cytosolic side of the nuclear envelope (NE) and interacts with NPC proteins, a transmembrane domain, and a large, glycosylated carboxy-terminal domain within the NE lumen. Here we show that the N-terminal 200 amino acids of Pom152 that include only the amino-terminal and transmembrane regions are sufficient for localization to the NPC. Full-length, glycosylation-deficient, and truncated Pom152-GFP chimeras expressed in cells containing endogenous Pom152 localize to both NPCs and cortical endoplasmic reticulum (ER). Expression of Pom152-GFP fusions in pom152Δ cells results in detectable localization at only the NE by full-length and amino-terminal Pom152-GFP fusions, but continued retention at both the NE and ER for a chimera lacking just the carboxy-terminal 377 amino acids. Neither deletion of Pom152 nor its carboxy-terminal glycosylation sites altered the nuclear protein export rate of an Msn5/Kap142 protein cargo. These data narrow the Pom152 region sufficient for NPC localization and provide evidence that alterations in other domains may impact Pom152 targeting or affinity for the NPC.


2021 ◽  
Vol 153 (9) ◽  
Author(s):  
Alexandre G. Vouga ◽  
Michael E. Rockman ◽  
Jiusheng Yan ◽  
Marlene A. Jacobson ◽  
Brad S. Rothberg

Large-conductance Ca2+-activated K+ (BK) channels control a range of physiological functions, and their dysfunction is linked to human disease. We have found that the widely used drug loperamide (LOP) can inhibit activity of BK channels composed of either α-subunits (BKα channels) or α-subunits plus the auxiliary γ1-subunit (BKα/γ1 channels), and here we analyze the molecular mechanism of LOP action. LOP applied at the cytosolic side of the membrane rapidly and reversibly inhibited BK current, an effect that appeared as a decay in voltage-activated BK currents. The apparent affinity for LOP decreased with hyperpolarization in a manner consistent with LOP behaving as an inhibitor of open, activated channels. Increasing LOP concentration reduced the half-maximal activation voltage, consistent with relative stabilization of the LOP-inhibited open state. Single-channel recordings revealed that LOP did not reduce unitary BK channel current, but instead decreased BK channel open probability and mean open times. LOP elicited use-dependent inhibition, in which trains of brief depolarizing steps lead to accumulated reduction of BK current, whereas single brief depolarizing steps do not. The principal effects of LOP on BK channel gating are described by a mechanism in which LOP acts as a state-dependent pore blocker. Our results suggest that therapeutic doses of LOP may act in part by inhibiting K+ efflux through intestinal BK channels.


2021 ◽  
Author(s):  
NANAKA KANESHIRO ◽  
KOMAI MASATO ◽  
RYOSUKE IMAOKA ◽  
ATSUYA IKEDA ◽  
YUJI KAMIKUBO ◽  
...  

β-amyloid precursor protein (APP) and their metabolites are deeply involved in the development of Alzheimer's disease (AD). Upon the upregulation of β-site APP cleaving enzyme 1 (BACE1), its product, the β-carboxyl-terminal fragment of APP (βCTF), is accumulated in the early stage of sporadic AD brains. βCTF accumulation is currently considered the trigger for endosomal anomalies to form enlarged endosomes, one of the earliest pathologies in AD. However, the details of the underlying mechanism remain largely unclear. In this study, using BACE1 stably-overexpressing cells, we describe that lipid flippase subcomponent TMEM30A interacts with accumulated βCTF. Among the lipid flippases in endosomes, those composed of TMEM30A and active subcomponent ATP8A1 transports phospholipid, phosphatidylserine (PS), to the cytosolic side of the endosomes. The lipid flippase activity and cytosolic PS distribution are critical for membrane fission and vesicle transport. Intriguingly, accumulated βCTF in model cells impaired lipid flippase physiological formation and activity, along with endosome enlargement. Moreover, in the brains of AD model mice before the amyloid-β (Aβ) deposition, the TMEM30A/βCTF complex formation occurred, followed by lipid flippase dysfunction. Importantly, our novel Aβ/βCTF interacting TMEM30A-derived peptide "T-RAP" improved endosome enlargement and reduced βCTF levels. These T-RAP effects could result from the recovery of lipid flippase activity. Therefore, we propose lipid flippase dysfunction as a key pathogenic event and a novel therapeutic target for AD.


2021 ◽  
Author(s):  
Siyoung Kim ◽  
Gregory A. Voth

Lipid droplets (LDs) are neutral lipid storing organelles surrounded by a phospholipid (PL) monolayer. At present, how LDs are formed in the endoplasmic reticulum (ER) bilayer is poorly understood. In this study, we present a revised triolein (TG) model, the main constituent of the LD core, and characterize its properties in a bilayer membrane to demonstrate the implications of its behavior in LD biogenesis. In all-atom (AA) bilayer simulations, TG resides at the surface, adopting PL-like conformations (denoted in this work as SURF-TG). Free energy sampling simulation results estimate the barrier for TG relocating from the bilayer surface to the bilayer center to be ~2 kcal/mol in the absence of an oil lens. Conical SURF-TG is able to modulate membrane properties by increasing PL ordering, decreasing bending modulus, and creating local negative curvature. The other conical lipid, dioleoyl-glycerol (DAG), also reduces the membrane bending modulus and populates the negative curvature regions. A phenomenological coarse-grained (CG) model is also developed to observe larger scale SURF-TG-mediated membrane deformation. The CG simulations confirm that TG nucleates between the bilayer leaflets at a critical concentration when SURF-TG is evenly distributed. However, when one monolayer contains more SURF-TG, the membrane bends toward the other leaflet. The central conclusion of this study is that SURF-TG is a negative curvature inducer, as well as a membrane modulator. To this end, a model has proposed in which the accumulation of SURF-TG in the luminal leaflet bends the ER bilayer toward the cytosolic side, followed by TG nucleation.


Author(s):  
Benjamin Liffner ◽  
Juan Miguel Balbin ◽  
Jan Stephan Wichers ◽  
Tim-Wolf Gilberger ◽  
Danny W. Wilson
Keyword(s):  

2021 ◽  
Author(s):  
Alicja M. Cygan ◽  
Pierre M. Jean Beltran ◽  
Tess C. Branon ◽  
Alice Y. Ting ◽  
Steven A. Carr ◽  
...  

AbstractToxoplasma gondii is a ubiquitous, intracellular parasite that envelopes its parasitophorous vacuole with a protein-laden membrane (PVM). The PVM is critical for interactions with the infected host cell such as nutrient transport and immune defense. Only a few parasite and host proteins have so far been identified on the host-cytosolic side of the PVM. We report here the use of human foreskin fibroblasts expressing the proximity-labeling enzyme miniTurbo, fused to a domain that targets it to this face of the PVM, in combination with quantitative proteomics to specifically identify proteins present at this crucial interface. Out of numerous human and parasite proteins with candidate PVM localization, we validate three novel parasite proteins (TGGT1_269950, TGGT1_215360, and TGGT1_217530) and four new host proteins (PDCD6IP/ALIX, PDCD6, CC2D1A, and MOSPD2) as localized to the PVM in infected human cells through immunofluorescence microscopy. These results significantly expand our knowledge of proteins present at the PVM and, given that three of the validated host proteins are components of the ESCRT machinery, they further suggest that novel biology is operating at this crucial host-pathogen interface.ImportanceToxoplasma is an intracellular pathogen which resides and replicates inside a membrane-bound vacuole in infected cells. This vacuole is modified by both parasite and host proteins which participate in a variety of host-parasite interactions at this interface, including nutrient exchange, effector transport, and immune modulation. Only a small number of parasite and host proteins present at the vacuolar membrane and exposed to the host cytosol have thus far been identified. Here we report the identification of several novel parasite and host proteins present at the vacuolar membrane using enzyme-catalyzed proximity-labeling, significantly increasing our knowledge of the molecular players present and novel biology occurring at this crucial interface.


BPB Reports ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 92-97
Author(s):  
Yoshinobu Fujiwara ◽  
Takeshi Ito ◽  
Atsumi Toiyama ◽  
Takenori Yamamoto ◽  
Naoshi Yamazaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document