scholarly journals Role of an energized inner membrane in mitochondrial protein import. Delta psi drives the movement of presequences.

1991 ◽  
Vol 266 (27) ◽  
pp. 18051-18057
Author(s):  
J. Martin ◽  
K. Mahlke ◽  
N. Pfanner
2019 ◽  
Vol 116 (33) ◽  
pp. 16593-16602 ◽  
Author(s):  
Svitlana Yablonska ◽  
Vinitha Ganesan ◽  
Lisa M. Ferrando ◽  
JinHo Kim ◽  
Anna Pyzel ◽  
...  

Mutant huntingtin (mHTT), the causative protein in Huntington’s disease (HD), associates with the translocase of mitochondrial inner membrane 23 (TIM23) complex, resulting in inhibition of synaptic mitochondrial protein import first detected in presymptomatic HD mice. The early timing of this event suggests that it is a relevant and direct pathophysiologic consequence of mHTT expression. We show that, of the 4 TIM23 complex proteins, mHTT specifically binds to the TIM23 subunit and that full-length wild-type huntingtin (wtHTT) and mHTT reside in the mitochondrial intermembrane space. We investigated differences in mitochondrial proteome between wtHTT and mHTT cells and found numerous proteomic disparities between mHTT and wtHTT mitochondria. We validated these data by quantitative immunoblotting in striatal cell lines and human HD brain tissue. The level of soluble matrix mitochondrial proteins imported through the TIM23 complex is lower in mHTT-expressing cell lines and brain tissues of HD patients compared with controls. In mHTT-expressing cell lines, membrane-bound TIM23-imported proteins have lower intramitochondrial levels, whereas inner membrane multispan proteins that are imported via the TIM22 pathway and proteins integrated into the outer membrane generally remain unchanged. In summary, we show that, in mitochondria, huntingtin is located in the intermembrane space, that mHTT binds with high-affinity to TIM23, and that mitochondria from mHTT-expressing cells and brain tissues of HD patients have reduced levels of nuclearly encoded proteins imported through TIM23. These data demonstrate the mechanism and biological significance of mHTT-mediated inhibition of mitochondrial protein import, a mechanism likely broadly relevant to other neurodegenerative diseases.


1993 ◽  
Vol 122 (5) ◽  
pp. 1003-1012 ◽  
Author(s):  
JL Emtage ◽  
RE Jensen

To identify new components that mediate mitochondrial protein import, we analyzed mas6, an import mutant in the yeast Saccharomyces cerevisiae. mas6 mutants are temperature sensitive for viability, and accumulate mitochondrial precursor proteins at the restrictive temperature. We show that mas6 does not correspond to any of the presently identified import mutants, and we find that mitochondria isolated from mas6 mutants are defective at an early stage of the mitochondrial protein import pathway. MAS6 encodes a 23-kD protein that contains several potential membrane spanning domains, and yeast strains disrupted for MAS6 are inviable at all temperatures and on all carbon sources. The Mas6 protein is located in the mitochondrial inner membrane and cannot be extracted from the membrane by alkali treatment. Antibodies to the Mas6 protein inhibit import into isolated mitochondria, but only when the outer membrane has been disrupted by osmotic shock. Mas6p therefore represents an essential import component located in the mitochondrial inner membrane.


1994 ◽  
Vol 5 (5) ◽  
pp. 529-538 ◽  
Author(s):  
K R Ryan ◽  
M M Menold ◽  
S Garrett ◽  
R E Jensen

MAS6 encodes an essential inner membrane protein required for mitochondrial protein import in the yeast Saccharomyces cerevisiae (Emtage and Jensen, 1993). To identify new inner membrane import components, we isolated a high-copy suppressor (SMS1) of the mas6-1 mutant. SMS1 encodes a 16.5-kDa protein that contains several potential membrane-spanning domains. The Sms1 protein is homologous to the carboxyl-terminal domain of the Mas6 protein. Like Mas6p, Sms1p is located in the mitochondrial inner membrane and is an essential protein. Depletion of Sms1p from cells causes defects in the import of several mitochondrial precursor proteins, suggesting that Sms1p is a new inner membrane import component. Our observations raise the possibility that Sms1p and Mas6p act together to translocate proteins across the inner membrane.


2009 ◽  
Vol 390 (8) ◽  
Author(s):  
Toshiya Endo ◽  
Koji Yamano

Abstract Mitochondria are two-membrane bounded organelles consisting of 1000–2000 different proteins, most of which are synthesized in the cytosol and subsequently imported into mitochondria. The imported proteins are further sorted to one of the four compartments, the outer membrane, intermembrane space, inner membrane, and matrix, mostly following one of the five major pathways. Mitochondrial protein import and sorting are mediated by the translocator complexes in the membranes and chaperones in the aqueous compartments operating along the import pathways. Here, we summarize the expanding knowledge on the roles of translocators, chaperones, and related components in the multiple pathways for mitochondrial protein trafficking.


2009 ◽  
Vol 184 (1) ◽  
pp. 129-141 ◽  
Author(s):  
Yasushi Tamura ◽  
Yoshihiro Harada ◽  
Takuya Shiota ◽  
Koji Yamano ◽  
Kazuaki Watanabe ◽  
...  

Mitochondrial protein traffic requires coordinated operation of protein translocator complexes in the mitochondrial membrane. The TIM23 complex translocates and inserts proteins into the mitochondrial inner membrane. Here we analyze the intermembrane space (IMS) domains of Tim23 and Tim50, which are essential subunits of the TIM23 complex, in these functions. We find that interactions of Tim23 and Tim50 in the IMS facilitate transfer of precursor proteins from the TOM40 complex, a general protein translocator in the outer membrane, to the TIM23 complex. Tim23–Tim50 interactions also facilitate a late step of protein translocation across the inner membrane by promoting motor functions of mitochondrial Hsp70 in the matrix. Therefore, the Tim23–Tim50 pair coordinates the actions of the TOM40 and TIM23 complexes together with motor proteins for mitochondrial protein import.


Genetics ◽  
2003 ◽  
Vol 165 (1) ◽  
pp. 35-45
Author(s):  
Cory D Dunn ◽  
Robert E Jensen

Abstract The TIM22 complex, required for the insertion of imported polytopic proteins into the mitochondrial inner membrane, contains the nonessential Tim18p subunit. To learn more about the function of Tim18p, we screened for high-copy suppressors of the inability of tim18Δ mutants to live without mitochondrial DNA (mtDNA). We identified several genes encoding cytosolic proteins, including CCT6, SSB1, ICY1, TIP41, and PBP1, which, when overproduced, rescue the mtDNA dependence of tim18Δ cells. Furthermore, these same plasmids rescue the petite-negative phenotype of cells lacking other components of the mitochondrial protein import machinery. Strikingly, disruption of the genes identified by the different suppressors produces cells that are unable to grow without mtDNA. We speculate that loss of mtDNA leads to a lowered inner membrane potential, and subtle changes in import efficiency can no longer be tolerated. Our results suggest that increased amounts of Cct6p, Ssb1p, Icy1p, Tip41p, and Pbp1p help overcome the problems resulting from a defect in protein import.


2018 ◽  
Vol 218 (2) ◽  
pp. 598-614 ◽  
Author(s):  
Frank Richter ◽  
Sven Dennerlein ◽  
Miroslav Nikolov ◽  
Daniel C. Jans ◽  
Nataliia Naumenko ◽  
...  

The mitochondrial presequence translocation machinery (TIM23 complex) is conserved between the yeast Saccharomyces cerevisiae and humans; however, functional characterization has been mainly performed in yeast. Here, we define the constituents of the human TIM23 complex using mass spectrometry and identified ROMO1 as a new translocase constituent with an exceptionally short half-life. Analyses of a ROMO1 knockout cell line revealed aberrant inner membrane structure and altered processing of the GTPase OPA1. We show that in the absence of ROMO1, mitochondria lose the inner membrane YME1L protease, which participates in OPA1 processing and ROMO1 turnover. While ROMO1 is dispensable for general protein import along the presequence pathway, we show that it participates in the dynamics of TIM21 during respiratory chain biogenesis and is specifically required for import of YME1L. This selective import defect can be linked to charge distribution in the unusually long targeting sequence of YME1L. Our analyses establish an unexpected link between mitochondrial protein import and inner membrane protein quality control.


1998 ◽  
Vol 9 (9) ◽  
pp. 2577-2593 ◽  
Author(s):  
Alison J. Davis ◽  
Kathleen R. Ryan ◽  
Robert E. Jensen

The Tim23 protein is an essential inner membrane (IM) component of the yeast mitochondrial protein import pathway. Tim23p does not carry an amino-terminal presequence; therefore, the targeting information resides within the mature protein. Tim23p is anchored in the IM via four transmembrane segments and has two positively charged loops facing the matrix. To identify the import signal for Tim23p, we have constructed several altered versions of the Tim23 protein and examined their function and import in yeast cells, as well as their import into isolated mitochondria. We replaced the positively charged amino acids in one or both loops with alanine residues and found that the positive charges are not required for import into mitochondria, but at least one positively charged loop is required for insertion into the IM. Furthermore, we find that the signal to target Tim23p to mitochondria is carried in at least two of the hydrophobic transmembrane segments. Our results suggest that Tim23p contains separate import signals: hydrophobic segments for targeting Tim23p to mitochondria, and positively charged loops for insertion into the IM. We therefore propose that Tim23p is imported into mitochondria in at least two distinct steps.


Sign in / Sign up

Export Citation Format

Share Document