scholarly journals Metal ions directed assembly of two coordination polymers based on an organic phosphonate anion and a multidentate N-donor ligand

2017 ◽  
Vol 1128 ◽  
pp. 513-519 ◽  
Author(s):  
Wei-Qiu Kan ◽  
Ji-Ming Xu ◽  
Shi-Zheng Wen ◽  
Lin Yang
2020 ◽  
Vol 8 (3) ◽  
pp. 163-190
Author(s):  
Benjamin Steinborn ◽  
Ulrich Lächelt

: Coordinative interactions between multivalent metal ions and drug derivatives with Lewis base functions give rise to nanoscale coordination polymers (NCPs) as delivery systems. As the pharmacologically active agent constitutes a main building block of the nanomaterial, the resulting drug loadings are typically very high. By additionally selecting metal ions with favorable pharmacological or physicochemical properties, the obtained NCPs are predominantly composed of active components which serve individual purposes, such as pharmacotherapy, photosensitization, multimodal imaging, chemodynamic therapy or radiosensitization. By this approach, the assembly of drug molecules into NCPs modulates pharmacokinetics, combines pharmacological drug action with specific characteristics of metal components and provides a strategy to generate tailorable multifunctional nanoparticles. This article reviews different applications and recent examples of such highly functional nanopharmaceuticals with a high ‘material economy’. : Lay Summary: Nanoparticles, that are small enough to circulate in the bloodstream and can carry cargo molecules, such as drugs, imaging or contrast agents, are attractive materials for pharmaceutical applications. A high loading capacity is a generally aspired parameter of nanopharmaceuticals to minimize patient exposure to unnecessary nanomaterial. Pharmaceutical agents containing Lewis base functions in their molecular structure can directly be assembled into metal-organic nanopharmaceuticals by coordinative interaction with metal ions. Such coordination polymers generally feature extraordinarily high loading capacities and the flexibility to encapsulate different agents for a simultaneous delivery in combination therapy or ‘theranostic’ applications.


CrystEngComm ◽  
2014 ◽  
Vol 16 (22) ◽  
pp. 4783-4795 ◽  
Author(s):  
Biswajit Bhattacharya ◽  
Debraj Saha ◽  
Dilip Kumar Maity ◽  
Rajdip Dey ◽  
Debajyoti Ghoshal

Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2292 ◽  
Author(s):  
Qi-Long Zhang ◽  
Qing Yu ◽  
Hai-Fang Xie ◽  
Bo Tu ◽  
Hong Xu ◽  
...  

In this study, six coordination polymers (CPs), {[Ag2(L)(CF3SO3)]·CF3SO3·2H2O·DMF}n (1), {[Ag(L)]·SbF6·4DMF·H2O}n (2), {[Zn(L)0.5(I)2]·3.75H2O}n (3), {[Cd2(L)(I)4(H2O)(DMF)]·4H2O·3DMF}n (4), {[Hg2(L)(I)4]·H2O·4DMF}n (5) and {[Hg2(L)(Cl)4]·2H2O·3DMF}n (6), were obtained based on the designed X-shaped urea-based ligand. X-ray single crystal diffraction analysis revealed that complex 1 displayed a 3D (3,4)-connected {6·82}{64·82}-tcj net. Complex 2 featured a 2D 4-connected {43·63} sheet. Complexes 3 and 5 exhibited a 1D polymeric loop chain. Complex 4 displayed a 1D polymeric fishbone chain. Complex 6 showed a 2D 4-connected {44·62}-sql sheet. Structural comparison revealed that not only the metal ions, but also the anions played crucial roles in the control of final structures.


Sign in / Sign up

Export Citation Format

Share Document