Kosmotropic and chaotropic effect of biocompatible Fe3O4 nanoparticles on egg white lysozyme; the key role of nanoparticle-protein corona formation

2021 ◽  
pp. 132016
Author(s):  
Hossein Akhtar ◽  
Fatemeh Yazdian ◽  
Hamid Rashedi
2021 ◽  
pp. 138830
Author(s):  
Baoliang Ma ◽  
Haohao Wang ◽  
Yujie Liu ◽  
Fang Wu ◽  
Xudong Zhu

Biology ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 307 ◽  
Author(s):  
Kornélia Bodó ◽  
Nicoló Baranzini ◽  
Rossana Girardello ◽  
Bohdana Kokhanyuk ◽  
Péter Németh ◽  
...  

Earthworms and leeches are sentinel animals that represent the annelid phylum within terrestrial and freshwater ecosystems, respectively. One early stress signal in these organisms is related to innate immunity, but how nanomaterials affect it is poorly characterized. In this survey, we compare the latest literature on earthworm and leeches with examples of their molecular/cellular responses to inorganic (silver nanoparticles) and organic (carbon nanotubes) nanomaterials. A special focus is placed on the role of annelid immunocytes in the evolutionarily conserved antioxidant and immune mechanisms and protein corona formation and probable endocytosis pathways involved in nanomaterial uptake. Our summary helps to realize why these environmental sentinels are beneficial to study the potential detrimental effects of nanomaterials.


2020 ◽  
Vol 36 (6) ◽  
Author(s):  
Reza Fattah ◽  
Hamid Rashedi ◽  
Fatemeh Yazdian ◽  
Seyed Babak Mousavi ◽  
Ahmad Fazeli

Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1028 ◽  
Author(s):  
Soyeon Jeon ◽  
Jessica Clavadetscher ◽  
Dong-Keun Lee ◽  
Sunay Chankeshwara ◽  
Mark Bradley ◽  
...  

The evaluation of the role of physicochemical properties in the toxicity of nanoparticles is important for the understanding of toxicity mechanisms and for controlling the behavior of nanoparticles. The surface charge of nanoparticles is suggested as one of the key parameters which decide their biological impact. In this study, we synthesized fluorophore-conjugated polystyrene nanoparticles (F-PLNPs), with seven different types of surface functional groups that were all based on an identical core, to evaluate the role of surface charge in the cellular uptake of nanoparticles. Phagocytic differentiated THP-1 cells or non-phagocytic A549 cells were incubated with F-PLNP for 4 h, and their cellular uptake was quantified by fluorescence intensity and confocal microscopy. The amount of internalized F-PLNPs showed a good positive correlation with the zeta potential of F-PLNPs in both cell lines (Pearson’s r = 0.7021 and 0.7852 for zeta potential vs. cellular uptake in THP-1 cells and nonphagocytic A549 cells, respectively). This result implies that surface charge is the major parameter determining cellular uptake efficiency, although other factors such as aggregation/agglomeration, protein corona formation, and compositional elements can also influence the cellular uptake partly or indirectly.


Sign in / Sign up

Export Citation Format

Share Document