scholarly journals Nanomaterials and Annelid Immunity: A Comparative Survey to Reveal the Common Stress and Defense Responses of Two Sentinel Species to Nanomaterials in the Environment

Biology ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 307 ◽  
Author(s):  
Kornélia Bodó ◽  
Nicoló Baranzini ◽  
Rossana Girardello ◽  
Bohdana Kokhanyuk ◽  
Péter Németh ◽  
...  

Earthworms and leeches are sentinel animals that represent the annelid phylum within terrestrial and freshwater ecosystems, respectively. One early stress signal in these organisms is related to innate immunity, but how nanomaterials affect it is poorly characterized. In this survey, we compare the latest literature on earthworm and leeches with examples of their molecular/cellular responses to inorganic (silver nanoparticles) and organic (carbon nanotubes) nanomaterials. A special focus is placed on the role of annelid immunocytes in the evolutionarily conserved antioxidant and immune mechanisms and protein corona formation and probable endocytosis pathways involved in nanomaterial uptake. Our summary helps to realize why these environmental sentinels are beneficial to study the potential detrimental effects of nanomaterials.

2020 ◽  
Vol 36 (6) ◽  
Author(s):  
Reza Fattah ◽  
Hamid Rashedi ◽  
Fatemeh Yazdian ◽  
Seyed Babak Mousavi ◽  
Ahmad Fazeli

2019 ◽  
Vol 10 (3) ◽  
pp. 522-537
Author(s):  
Federica CACCIATORE ◽  
Mariolina ELIANTONIO

The Common Fisheries Policy (CFP) is one of the ever-increasing policy areas that have witnessed the creation of forms of “networked enforcement”, meaning enforcement structures in which several national and EU authorities cooperate. Amongst those are a number of legal requirements and applications for sharing data on fisheries between national and European competent authorities. This form of networked enforcement casts some questions as regards the existence of corresponding accountability mechanisms, which serve to legitimate the enforcement activities in the CFP. The aim of this paper is to examine the networked enforcement mechanisms arising from the CFP, with a special focus on the data-sharing activities and the role of European Fisheries Control Agency as pivotal to the cooperation between national authorities, with a view to assessing the gaps of accountability arising from them, and analysing the possible alternative ways to provide the enforcement phase with legitimacy.


Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1028 ◽  
Author(s):  
Soyeon Jeon ◽  
Jessica Clavadetscher ◽  
Dong-Keun Lee ◽  
Sunay Chankeshwara ◽  
Mark Bradley ◽  
...  

The evaluation of the role of physicochemical properties in the toxicity of nanoparticles is important for the understanding of toxicity mechanisms and for controlling the behavior of nanoparticles. The surface charge of nanoparticles is suggested as one of the key parameters which decide their biological impact. In this study, we synthesized fluorophore-conjugated polystyrene nanoparticles (F-PLNPs), with seven different types of surface functional groups that were all based on an identical core, to evaluate the role of surface charge in the cellular uptake of nanoparticles. Phagocytic differentiated THP-1 cells or non-phagocytic A549 cells were incubated with F-PLNP for 4 h, and their cellular uptake was quantified by fluorescence intensity and confocal microscopy. The amount of internalized F-PLNPs showed a good positive correlation with the zeta potential of F-PLNPs in both cell lines (Pearson’s r = 0.7021 and 0.7852 for zeta potential vs. cellular uptake in THP-1 cells and nonphagocytic A549 cells, respectively). This result implies that surface charge is the major parameter determining cellular uptake efficiency, although other factors such as aggregation/agglomeration, protein corona formation, and compositional elements can also influence the cellular uptake partly or indirectly.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paulo G. Hofstatter ◽  
Gokilavani Thangavel ◽  
Marco Castellani ◽  
André Marques

Differently from the common monocentric organization of eukaryotic chromosomes, the so-called holocentric chromosomes present many centromeric regions along their length. This chromosomal organization can be found in animal and plant lineages, whose distribution suggests that it has evolved independently several times. Holocentric chromosomes present an advantage: even broken chromosome parts can be correctly segregated upon cell division. However, the evolution of holocentricity brought about consequences to nuclear processes and several adaptations are necessary to cope with this new organization. Centromeres of monocentric chromosomes are involved in a two-step cohesion release during meiosis. To deal with that holocentric lineages developed different adaptations, like the chromosome remodeling strategy in Caenorhabditis elegans or the inverted meiosis in plants. Furthermore, the frequency of recombination at or around centromeres is normally very low and the presence of centromeric regions throughout the entire length of the chromosomes could potentially pose a problem for recombination in holocentric organisms. However, meiotic recombination happens, with exceptions, in those lineages in spite of their holocentric organization suggesting that the role of centromere as recombination suppressor might be altered in these lineages. Most of the available information about adaptations to meiosis in holocentric organisms is derived from the animal model C. elegans. As holocentricity evolved independently in different lineages, adaptations observed in C. elegans probably do not apply to other lineages and very limited research is available for holocentric plants. Currently, we still lack a holocentric model for plants, but good candidates may be found among Cyperaceae, a large angiosperm family. Besides holocentricity, chiasmatic and achiasmatic inverted meiosis are found in the family. Here, we introduce the main concepts of meiotic constraints and adaptations with special focus in meiosis progression and recombination in holocentric plants. Finally, we present the main challenges and perspectives for future research in the field of chromosome biology and meiosis in holocentric plants.


Sign in / Sign up

Export Citation Format

Share Document