egg white lysozyme
Recently Published Documents


TOTAL DOCUMENTS

1123
(FIVE YEARS 127)

H-INDEX

69
(FIVE YEARS 8)

2022 ◽  
Vol 8 ◽  
Author(s):  
Tatsuhito Matsuo ◽  
Alessio De Francesco ◽  
Judith Peters

Lysozyme amyloidosis is a hereditary disease, which is characterized by the deposition of lysozyme amyloid fibrils in various internal organs. It is known that lysozyme fibrils show polymorphism and that polymorphs formed at near-neutral pH have the ability to promote more monomer binding than those formed at acidic pH, indicating that only specific polymorphs become dominant species in a given environment. This is likely due to the polymorph-specific configurational diffusion. Understanding the possible differences in dynamical behavior between the polymorphs is thus crucial to deepen our knowledge of amyloid polymorphism and eventually elucidate the molecular mechanism of lysozyme amyloidosis. In this study, molecular dynamics at sub-nanosecond timescale of two kinds of polymorphic fibrils of hen egg white lysozyme, which has long been used as a model of human lysozyme, formed at pH 2.7 (LP27) and pH 6.0 (LP60) was investigated using elastic incoherent neutron scattering (EINS) and quasi-elastic neutron scattering (QENS). Analysis of the EINS data showed that whereas the mean square displacement of atomic motions is similar for both LP27 and LP60, LP60 contains a larger fraction of atoms moving with larger amplitudes than LP27, indicating that the dynamical difference between the two polymorphs lies not in the averaged amplitude, but in the distribution of the amplitudes. Furthermore, analysis of the QENS data showed that the jump diffusion coefficient of atoms is larger for LP60, suggesting that the atoms of LP60 undergo faster diffusive motions than those of LP27. This study thus characterizes the dynamics of the two lysozyme polymorphs and reveals that the molecular dynamics of LP60 is enhanced compared with that of LP27. The higher molecular flexibility of the polymorph would permit to adjust its conformation more quickly than its counterpart, facilitating monomer binding.


2021 ◽  
Author(s):  
Debabrata Dey ◽  
Ariane Nunes-Alves ◽  
Rebecca C. Wade ◽  
Gideon Schreiber

Crowded environments affect the pharmacokinetics of drug molecules. Here, we investigate how three macromolecular protein crowders, bovine serum albumin, hen egg-white lysozyme and myoglobin, influence the translational diffusion rates and interactions of four low molecular-weight drugs, fluorescein, doxorubicin, glycogen synthase kinase-3 inhibitor SB216763 and quinacrine. Using Fluorescence Recovery After Photo-bleaching in Line mode (Line FRAP), Brownian dynamics simulations and molecular docking, we find that the diffusive behavior of the small molecules is highly affected by self-aggregation, interactions with the proteins, and surface adhesion. Fluorescein diffusion is decreased by protein crowders due to their interactions. On the other hand, for doxorubicin, the presence of protein crowders increases diffusion by reducing surface interactions. SB216763 shows a third scenario, where BSA, but not myoglobin or lysozyme, reduces self-aggregation, resulting in faster diffusion. Quinacrine was the only small molecule whose diffusion was not affected by the presence of protein crowders. The mechanistic insights gained here into the effects of interactions of small molecules with proteins and surfaces on the translational diffusion of small molecules can assist in optimizing the design of compounds for higher mobility and lower occlusion in complex macromolecular environments.


Author(s):  
Joao Ramos ◽  
Valerie Laux ◽  
Michael Haertlein ◽  
V. Trevor Forsyth ◽  
Estelle Mossou ◽  
...  

The biological function of a protein is intimately related to its structure and dynamics, which in turn are determined by the way in which it has been folded. In vitro refolding is commonly used for the recovery of recombinant proteins that are expressed in the form of inclusion bodies and is of central interest in terms of the folding pathways that occur in vivo. Here, biophysical data are reported for in vitro-refolded hydrogenated hen egg-white lysozyme, in combination with atomic resolution X-ray diffraction analyses, which allowed detailed comparisons with native hydrogenated and refolded perdeuterated lysozyme. Distinct folding modes are observed for the hydrogenated and perdeuterated refolded variants, which are determined by conformational changes to the backbone structure of the Lys97–Gly104 flexible loop. Surprisingly, the structure of the refolded perdeuterated protein is closer to that of native lysozyme than that of the refolded hydrogenated protein. These structural differences suggest that the observed decreases in thermal stability and enzymatic activity in the refolded perdeuterated and hydrogenated proteins are consequences of the macromolecular deuteration effect and of distinct folding dynamics, respectively. These results are discussed in the context of both in vitro and in vivo folding, as well as of lysozyme amyloidogenesis.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12401
Author(s):  
Jana Svobodová ◽  
Jakub Kreisinger ◽  
Veronika Gvoždíková Javůrková

Microbiome formation and assemblage are essential processes influencing proper embryonal and early-life development in neonates. In birds, transmission of microbes from the outer environment into the egg’s interior has been found to shape embryo viability and hatchling phenotype. However, microbial transmission may be affected by egg-white antimicrobial proteins (AMPs), whose concentration and antimicrobial action are temperature-modulated. As both partial incubation and clutch covering with nest-lining feathers during the pre-incubation period can significantly alter temperature conditions acting on eggs, we experimentally investigated the effects of these behavioural mechanisms on concentrations of both the primary and most abundant egg-white AMPs (lysozyme and avidin) using mallard (Anas platyrhychos) eggs. In addition, we assessed whether concentrations of egg-white AMPs altered the probability and intensity of bacterial trans-shell penetration, thereby affecting hatchling morphological traits in vivo. We observed higher concentrations of lysozyme in partially incubated eggs. Clutch covering with nest-lining feathers had no effect on egg-white AMP concentration and we observed no association between concentration of egg-white lysozyme and avidin with either the probability or intensity of bacterial trans-shell penetration. The higher egg-white lysozyme concentration was associated with decreased scaled body mass index of hatchlings. These outcomes demonstrate that incubation prior to clutch completion in precocial birds can alter concentrations of particular egg-white AMPs, though with no effect on bacterial transmission into the egg in vivo. Furthermore, a higher egg white lysozyme concentration compromised hatchling body condition, suggesting a potential growth-regulating role of lysozyme during embryogenesis in precocial birds.


Author(s):  
Jarosław Wawer ◽  
Emilia Kaczkowska ◽  
Jakub Karczewski ◽  
Danuta Augustin-Nowacka ◽  
Joanna Krakowiak

Sign in / Sign up

Export Citation Format

Share Document