Strain-hardening behaviors of TRIP-assisted steels during plastic deformation

2008 ◽  
Vol 479 (1-2) ◽  
pp. 333-338 ◽  
Author(s):  
Hai Yan Yu
2011 ◽  
Vol 70 ◽  
pp. 458-463 ◽  
Author(s):  
A. F. Robinson ◽  
Janice M. Dulieu-Barton ◽  
S. Quinn ◽  
R. L. Burguete

In some metals it has been shown that the introduction of plastic deformation or strain modifies the thermoelastic constant, K. If it was possible to define the magnitude of the change in thermoelastic constant over a range of plastic strain, then the plastic strain that a material has experienced could be established based on a measured change in the thermoelastic constant. This variation of the thermoelastic constant and the ability to estimate the plastic strain that has been experienced, has potential to form the basis of a novel non-destructive, non-contact, full-field technique for residual stress assessment using thermoelastic stress analysis (TSA). Recent research has suggested that the change in thermoelastic constant is related to the material dislocation that occurs during strain hardening, and thus the change in K for a material that does not strain harden would be significantly less than for a material that does. In the work described in this paper, the change in thermoelastic constant for three materials (316L stainless steel, AA2024 and AA7085) with different strain hardening characteristics is investigated. As the change in thermoelastic response due to plastic strain is small, and metallic specimens require a paint coating for TSA, the effects of the paint coating and other test factors on the thermoelastic response have been considered.


1958 ◽  
Vol 25 (4) ◽  
pp. 529-536
Author(s):  
J. F. Besseling

Abstract Stress-strain relations are given for an initially isotropic material, which is macroscopically homogeneous, but inhomogeneous on a microscopic scale. An element of volume is considered to be composed of various portions, which can be represented by subelements showing secondary creep and isotropic work-hardening in plastic deformation. If the condition is imposed that all subelements of an element of volume are subjected to the same total strain, it is demonstrated that the inelastic stress-strain relations of the material show anisotropic strain-hardening, creep recovery, and primary and secondary creep due to the nonuniform energy dissipation in deformation of the sub-elements. Only quasi-static deformations under isothermal conditions are considered. The theory is restricted to small total strains.


1980 ◽  
Vol 22 (9) ◽  
pp. 665-667 ◽  
Author(s):  
V. D. Kal'ner ◽  
M. N. Goryshina ◽  
Ya. V. Shubert

1972 ◽  
Vol 25 (5) ◽  
pp. 1095-1118 ◽  
Author(s):  
A. S. Argon ◽  
A. K. Nigam ◽  
G. E. Padawer

Sign in / Sign up

Export Citation Format

Share Document