The effect of aluminum and carbon on the structural changes and strain hardening of austenitic Fe-Mn-Al alloy steels during plastic deformation

1991 ◽  
Vol 25 (8) ◽  
pp. 1869-1874 ◽  
Author(s):  
P. Li ◽  
S.L. Chu ◽  
C.P. Chou ◽  
F.C. Chen
2016 ◽  
Vol 870 ◽  
pp. 253-258 ◽  
Author(s):  
Georgy I. Raab ◽  
Yu.M. Podrezov ◽  
Gennady N. Aleshin

The paper analyzes the regularities of structure formation in low-alloyed carbon steels. During the investigation of ferritic-pearlitic steel samples it has been found that the structure formation in pearlite essentially lags behind structural changes in ferrite grains, and this delay is observed at all stages of deformation. An important feature of structure formation in pearlite is crack nucleation in cementite, accompanied by dislocation pile-up in the ferrite interlayers of pearlite. Using the method of dislocation dynamics, the relationship between structural transformations and the parameters of strain hardening is analyzed. It is demonstrated that the proposed method of computer analysis reflects well the processes taking place in a material during plastic deformation. The character of the theoretical curve of strain hardening is determined by the dislocation structure that forms in a material at various stages of deformation.


2006 ◽  
Vol 503-504 ◽  
pp. 705-710 ◽  
Author(s):  
Goroh Itoh ◽  
Hisashi Hasegawa ◽  
Tsing Zhou ◽  
Yoshinobu Motohashi ◽  
Mitsuo Niinomi

Usual static recrystallization treatment and a method to provide intense plastic deformation, ARB namely Accumulative Roll-Bonding, have been applied to two beta type titanium alloys, i.e. Ti-29Nb-13Ta-4.6Zr and Ti-15V-3Cr-3Sn-3Al. Microstructural change as well as work-hardening behavior was examined as a function of plastic strain. Both the work-hardening rate and the hardness at the initial as-hot-rolled state were smaller in the Ti-Nb-Ta-Zr alloy than in the Ti-V-Cr-Sn-Al alloy. Recrystallized grains of 14μm in size were obtained by the usual static recrystallization treatment, which was significantly smaller than that of the starting as-hot-rolled plate of 38μm. No significant change other than flattening and elongating of the original grains was found in the optical microscopic scale. It was revealed, however, from a TEM observation combined with selected area diffraction technique that geometric dynamic recrystallization occurred in the Ti-Nb-Ta-Zr alloy deformed at room temperature by a true strain of 5, resulting in an ultra-fine-grained microstructure where the grain size was roughly estimated to be about 100nm.


2011 ◽  
Vol 53 (12) ◽  
pp. 1325-1330
Author(s):  
Ya. A. Abzgildin ◽  
R. F. Al’mukhametov ◽  
N. G. Zaripov ◽  
H. Ya. Mulyukov

2011 ◽  
Vol 70 ◽  
pp. 458-463 ◽  
Author(s):  
A. F. Robinson ◽  
Janice M. Dulieu-Barton ◽  
S. Quinn ◽  
R. L. Burguete

In some metals it has been shown that the introduction of plastic deformation or strain modifies the thermoelastic constant, K. If it was possible to define the magnitude of the change in thermoelastic constant over a range of plastic strain, then the plastic strain that a material has experienced could be established based on a measured change in the thermoelastic constant. This variation of the thermoelastic constant and the ability to estimate the plastic strain that has been experienced, has potential to form the basis of a novel non-destructive, non-contact, full-field technique for residual stress assessment using thermoelastic stress analysis (TSA). Recent research has suggested that the change in thermoelastic constant is related to the material dislocation that occurs during strain hardening, and thus the change in K for a material that does not strain harden would be significantly less than for a material that does. In the work described in this paper, the change in thermoelastic constant for three materials (316L stainless steel, AA2024 and AA7085) with different strain hardening characteristics is investigated. As the change in thermoelastic response due to plastic strain is small, and metallic specimens require a paint coating for TSA, the effects of the paint coating and other test factors on the thermoelastic response have been considered.


Materia Japan ◽  
2003 ◽  
Vol 42 (12) ◽  
pp. 863-863 ◽  
Author(s):  
Keiichiro Ohishi ◽  
Takeshi Fujita ◽  
Kunihiro Ohashi ◽  
Kenji Kaneko ◽  
Zenji Horita

1958 ◽  
Vol 25 (4) ◽  
pp. 529-536
Author(s):  
J. F. Besseling

Abstract Stress-strain relations are given for an initially isotropic material, which is macroscopically homogeneous, but inhomogeneous on a microscopic scale. An element of volume is considered to be composed of various portions, which can be represented by subelements showing secondary creep and isotropic work-hardening in plastic deformation. If the condition is imposed that all subelements of an element of volume are subjected to the same total strain, it is demonstrated that the inelastic stress-strain relations of the material show anisotropic strain-hardening, creep recovery, and primary and secondary creep due to the nonuniform energy dissipation in deformation of the sub-elements. Only quasi-static deformations under isothermal conditions are considered. The theory is restricted to small total strains.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ge Wu ◽  
Chang Liu ◽  
Ligang Sun ◽  
Qing Wang ◽  
Baoan Sun ◽  
...  

Abstract High strength and high ductility are often mutually exclusive properties for structural metallic materials. This is particularly important for aluminum (Al)-based alloys which are widely commercially employed. Here, we introduce a hierarchical nanostructured Al alloy with a structure of Al nanograins surrounded by nano-sized metallic glass (MG) shells. It achieves an ultrahigh yield strength of 1.2 GPa in tension (1.7 GPa in compression) along with 15% plasticity in tension (over 70% in compression). The nano-sized MG phase facilitates such ultrahigh strength by impeding dislocation gliding from one nanograin to another, while continuous generation-movement-annihilation of dislocations in the Al nanograins and the flow behavior of the nano-sized MG phase result in increased plasticity. This plastic deformation mechanism is also an efficient way to decrease grain size to sub-10 nm size for low melting temperature metals like Al, making this structural design one solution to the strength-plasticity trade-off.


Sign in / Sign up

Export Citation Format

Share Document