Comparative investigation of creep behavior of ceramic fiber-reinforced alumina and silica aerogel

2014 ◽  
Vol 609 ◽  
pp. 125-130 ◽  
Author(s):  
Xiaoguang Yang ◽  
Jing Wei ◽  
Duoqi Shi ◽  
Yantao Sun ◽  
Shuangqi Lv ◽  
...  
2005 ◽  
Vol 35 (2) ◽  
pp. 296-300 ◽  
Author(s):  
Yiping Ma ◽  
Beirong Zhu ◽  
Muhua Tan

Author(s):  
Anaïs Farrugia ◽  
Charles Winkelmann ◽  
Valeria La Saponara ◽  
Jeong Sik Kim ◽  
Anastasia H. Muliana

In service, composite structures present the unique challenge of damage detection and repair. Piezoelectric ceramic, such as lead zirconate titanate (PZT), is often used for detecting damage in composites. This paper investigates the effect of embedded PZT crystals on the overall creep behavior of sandwich beams comprising of glass fiber reinforced polymer laminated skins and polymer foam core, which could potentially be used as a damage-detecting smart structure. Uniaxial quasi-static and creep tests were performed on the glass/epoxy laminated composites having several fiber orientations, 0 deg, 45 deg, and 90 deg, to calibrate the elastic and viscoelastic properties of the fibers and matrix. Three-point bending creep tests at elevated temperature (80°C) were then carried out for a number of control sandwich beams (no PZT crystal) and conditioned sandwich beams (with PZT crystals embedded in the center of one facesheet). Lateral deflection of the sandwich beams was monitored for more than 60 h. The model presented in this paper is composed by two parts: (a) a simplified micromechanical model of unidirectional fiber reinforced composites used to obtain effective properties and overall creep response of the laminated skins and (b) a finite element method to simulate the overall creep behavior of the sandwich beams with embedded PZT crystals. The simplified micromechanical model is implemented in the material integration points within the laminated skin elements. Fibers are modeled as linear elastic, while a linearized viscoelastic material model is used for the epoxy matrix and foam core. Numerical results on the creep deflection of the smart sandwich beams show good correlations with the experimental creep deflection at 80°C, thus proving that this model, although currently based on material properties reported at room temperature, is promising to obtain a reasonable prediction for the creep of a smart sandwich structure at high temperatures.


2020 ◽  
Vol 62 (10) ◽  
pp. 1003-1009
Author(s):  
Yantao Sun ◽  
Jia Huang ◽  
Duoqi Shi ◽  
Shengliang Zhang ◽  
Zhizhong Fu ◽  
...  

Abstract Comprehensive characterization mechanical properties of aerogels and their composites are important for engineering design. In particular, some aerogel composites were reported to have varied tension and compression moduli. But conducting tension tests is difficult for the reason that low strength and brittleness will lead to unexpected failure in the non-test area. A method is presented for measuring both the tension and compression moduli of a ceramic-fiber reinforced SiO2 aerogel composite by bending via digital image correlation. First, the relationship between bending behavior and the tension/compression moduli was introduced for bimodular materials. Then a bending test was conducted to predict tension and the compression moduli of the ceramicfiber- reinforced SiO2 aerogel composite via digital image correlation. In addition, uniaxial tension and compression tests of the aerogel composites were carried out, respectively for measuring tension and compression moduli. The tension and compression moduli measured were numerically similar to results obtained from uniaxial tests with a difference of less than 14 %.


Sign in / Sign up

Export Citation Format

Share Document