scholarly journals Synthesis of nanodiamond reinforced silver matrix nanocomposites: Microstructure and mechanical properties

2020 ◽  
Vol 782 ◽  
pp. 139254 ◽  
Author(s):  
A. Katzensteiner ◽  
J.M. Rosalie ◽  
R. Pippan ◽  
A. Bachmaier
2019 ◽  
Vol 26 (1) ◽  
pp. 221-229 ◽  
Author(s):  
Xiaolong Zhou ◽  
Li Chen ◽  
Manmen Liu ◽  
Jie Yu ◽  
Damin Xiong ◽  
...  

AbstractThe AgSnO2NiO composites were prepared by internal oxidation method. The effects of different NiO content on the microstructure and mechanical properties of AgSnO2NiO composites were studied. The phase structure and surface morphology of the prepared AgSnO2NiO materials were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Metallographic Microscopy (MM). The results showed that the AgSnO2NiO composites with different NiO content can be obtained by the process of preoxidation of AgSn alloy powder and internal oxidation of ingot containing Ni. The agglomeration phenomenon of Ni in the silver matrix was serious, which led to the agglomeration of in-situ generated NiO particles after internal oxidation. After the multi-pass drawing, the SnO2 particles dispersedly distributed in the AgSnO2NiO composites and the NiO particles gradually dispersed from the agglomerated state of the sintered ingot billet. The hardness of the prepared AgSnO2NiO composites increased slightly with the increase of NiO content. The mechanical properties test showed that the introduction of NiO particles significantly improved the tensile strength and elongation of AgSnO2 materials to a certain degree. Adding proper amount of NiO is beneficial to improve the overall performance of AgSnO2 materials.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Zheng Lv ◽  
Xueping Ren ◽  
Wenjing Wang ◽  
Xiaodan Gao ◽  
Wenjie Li

Magnesium matrix nanocomposites (MMNC, the same below) containing 2 wt.% nanosized SiCp were fabricated through accumulative roll bonding (ARB). The microstructure and mechanical properties of Mg/2 wt.%SiCp nanocomposites are reported for various ARB cycles. To evaluate microstructure of the nanocomposites, the field emission scanning electron microscope (FE-SEM), X-ray diffractometer (XRD), and transmission electron microscope (TEM) were applied. After fourteen ARB cycles, the nanocomposite showed a homogeneous distribution of reinforcements and a significant reduction in average matrix grain size. Meanwhile, the nanocomposite revealed a higher percentage of recrystallization and lower intensity of basal texture as compared to monolithic Mg. Mechanical properties were investigated through tensile and microhardness tests. The strength and elastic modulus and microhardness of Mg/2 wt.%SiCp were found to be improved significantly from eight ARB cycles and reach maximum values at fourteen ARB cycles. The ultimate tensile strength, yield strength, microhardness, and elastic modulus of Mg/2 wt.%SiCp are considerably increased by 17.6%, 61.0%, 72.7%, and 80.8% as compared to raw Mg, respectively.


Sign in / Sign up

Export Citation Format

Share Document