Unveiling contribution of overload-induced residual stress to fatigue retardation pertinent to crack closure and stress intensity

Author(s):  
Chunguo Zhang ◽  
Weidong Lu
2005 ◽  
Vol 297-300 ◽  
pp. 743-749
Author(s):  
Min Koo Han ◽  
Mamidala Ramulu

Fatigue crack propagation life of weld toe crack through residual stress field was estimated using Elber's crack closure concept. Propagation of weld toe crack is heavily influenced by residual stresses caused by the welding process, so it is essential to take into account the effect of residual stresses on the propagation life of a weld toe crack. Fatigue cracks at transverse and longitudinal weld toe was studied, these two cases represent the typical weld joints in ship structures. Numerical and experimental studies are performed for both cases. Residual stresses near the welding area were estimated through a nonlinear thermo-elasto-plastic finite element method and the residual stress intensity factor with Glinka's weight function method. Effective stress intensity factor was calculated using the Newman-Forman-de Koning-Henriksen equation, which is based on the Dugdale strip yield model in estimating the crack closure level, U, at different stress ratios. Calculated crack propagation life coincided well with experimental results.


1993 ◽  
Vol 28 (3) ◽  
pp. 145-152 ◽  
Author(s):  
M D B Wilks ◽  
D Nowell ◽  
D A Hills

A reliable, efficient method is described for modelling plane cracks in arbitary residual stress fields, using the technique of distributed dislocations. This allows correctly for re-distribution of residual stresses as the crack grows. Problems where crack closure occur are discussed, and implications for solution by finite element procedures are inferred and confirmed by comparison.


Author(s):  
H. Dai ◽  
J. F. Kelleher ◽  
P. J. Withers

Simple analyses of fracture and fatigue often make use of the stress intensity at a crack tip or the J-integral surrounding it. However, there is no universally accepted method of including the effect of residual stress in these values, even though the qualitative effect of residual stress on crack growth is well known. In this work, we create a cracked compact tension C(T) specimen with a residual stress field that affects the crack tip behaviour, in particular by altering the level of expected crack closure. Neutron diffraction measurements under in situ applied loading reveal strain distributions consistent with an increased level of closure when the crack tip is in a state of compressive residual stress. Through finite element modelling of the samples studied, we show that the residual stress in these samples redistributes as the crack grows, which changes the level of crack closure for any given crack length and applied load. As crack closure is often considered in fatigue analysis by deriving an ‘effective’ stress intensity based on the applied load needed to overcome the closure and open the crack, the model is used to compare this approach with numerical calculations of the J-integral for different crack lengths.


Author(s):  
C. J. Aird ◽  
M. J. Pavier ◽  
D. J. Smith

This paper presents the results of a fundamental finite-element based study of the crack-closure effects associated with combined residual and applied loading. First, an analytical expression for a representative two-dimensional residual stress field is derived. This residual stress field contains a central compressive region surrounded by an equilibrating tensile region. The analytical expression allows the size and shape of the field to be varied along with the magnitude of the residual stress. The residual stress field is then used as a prescribed initial stress field in a finite element model, in addition to a far field applied load. By introducing cracks of increasing length into these models, charts of stress-intensity-factor versus crack length are produced for different relative magnitudes of residual stress and applied load and for different sizes and shape of the residual stress field. These charts provide insight into the way in which crack-tip conditions evolve with crack growth under conditions of combined residual and applied loading and also enable conditions of crack closure and partial closure to be identified.


Sign in / Sign up

Export Citation Format

Share Document