ASME 2010 Pressure Vessels and Piping Conference: Volume 6, Parts A and B
Latest Publications


TOTAL DOCUMENTS

164
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Published By ASMEDC

9780791849255

Author(s):  
Gyeong-Geun Lee ◽  
Woo-Gon Kim ◽  
Yong-Wan Kim ◽  
Ji Yeon Park

The very high temperature gas reactor (VHTR) has been chosen by the Generation IV International Forum as one of the next-generation nuclear reactors. Due to the high operating temperatures of VHTR, Inconel alloy 617 is being considered as a primary candidate material for the intermediate heat exchanger (IHX) of the VHTR. In this study, the microstructures of creep specimens under various creep loads in a He environment were investigated. As the creep time increased, the thickness of Cr-oxide on the outer layer of the specimens clearly increased, and delaminated after a long creep time. Depths of the decarburized zones in the specimens increased slowly with creep time. However, precipitates at grain boundaries near the surface disappeared before the bulk diffusion of Cr in the matrix. It is considered that decarburization caused by minor gas impurities in He caused the reduction in creep rupture time.


Author(s):  
Caleb J. Frederick

Today, commercial nuclear power plants are installing High-Density Polyethylene (HDPE) in non-safety-related and safety-related applications. While this material has numerous advantages over the carbon steel pipes that historically have been used for the same applications, developing a way to accurately inspect for joint integrity in HDPE has become increasingly important to utilities and the U.S. Nuclear Regulatory Commission (USNRC). This paper will investigate the ability to quantify the levels of detection of flaws and detrimental conditions using ultrasonic phased array, in butt-fusion joints throughout the full spectrum of applicable HDPE pipe diameters and wall-thicknesses. Perhaps the most concerning joint condition is that of “Cold Fusion”. A cold-fused joint is created when molecules along the fusion line do not fully entangle or co-crystallize. Once the fusion process is complete, during visual examination, there is the appearance of a good quality joint. However, the joint does not have the strength needed, as the required co-crystallization along the pipe faces has not occurred. Performing a visual examination of the bead, as required by the current revision of ASME Code Case N-755, does not provide adequate guarantee of joint integrity. Therefore, volumetric examination is of special concern to the USNRC to safeguard against this type of detrimental condition. Factors addressed will include pipe diameter, wall-thickness, fusing temperature, interfacial pressure, dwell (open/close) time, and destructive verification of ultrasonic data.


Author(s):  
Arindam Chakraborty ◽  
Wasimreza Momin ◽  
Angah Miessi ◽  
Peihua Jing ◽  
Haiyang Qian

Leak-Before-Break (LBB) is employed in design of nuclear power reactor piping to eliminate consideration of the dynamic effects of pipe rupture from the plant design basis for the affected piping system. LBB cannot be applied if environmental conditions that could lead to degradation by stress corrosion cracking exists. For Alloy 600/82/182 dissimilar metal welds (DMW) in pressurized water reactor plants, primary water stress corrosion cracking (PWSCC) is found to be active. Application of weld overlay (WOL) of non-susceptible Alloy 690/52/152 material has been shown to mitigate PWSCC growth in DMW. Therefore, LBB can be considered for a DMW with Alloy 690/52/152 overlay. However, WOL sizing design postulates a complex crack which is through wall in the overlay material and part through or full circumferential in the DMW base material. This significantly reduces the critical flaw size and in turn the maximum allowable flaw size for leak rate. The current industry practice conservatively ignores the full circumferential crack in the original pipe material and assumes a through wall crack along the entire pipe thickness. This assumptions leads to significantly reduced leakage due to smaller crack opening. The problem becomes more critical with small diameter pipes. The current work calculates the crack opening displacements (CODs) for a pipe with complex crack. Since it is a function of several geometry and materials parameters, response functions are generated to calculate CODs.


Author(s):  
C. J. Aird ◽  
M. J. Pavier ◽  
D. J. Smith

This paper presents the results of a fundamental finite-element based study of the crack-closure effects associated with combined residual and applied loading. First, an analytical expression for a representative two-dimensional residual stress field is derived. This residual stress field contains a central compressive region surrounded by an equilibrating tensile region. The analytical expression allows the size and shape of the field to be varied along with the magnitude of the residual stress. The residual stress field is then used as a prescribed initial stress field in a finite element model, in addition to a far field applied load. By introducing cracks of increasing length into these models, charts of stress-intensity-factor versus crack length are produced for different relative magnitudes of residual stress and applied load and for different sizes and shape of the residual stress field. These charts provide insight into the way in which crack-tip conditions evolve with crack growth under conditions of combined residual and applied loading and also enable conditions of crack closure and partial closure to be identified.


Author(s):  
Seung-Kyun Kang ◽  
Young-Cheon Kim ◽  
Chan-Pyoung Park ◽  
Dongil Kwon

Understanding the property distribution in the weld zone is very important for structural safety, since deformation and fracture begin at the weakest point. However, conventional tensile tests can measure only average material properties because they require large specimens. Small-scale tests are being extensively researched to remove this limitation, among such tests, instrumented indentation test (IIT) are of great interest because of their simple procedures. Here we describe the evaluation of tensile properties using IIT and a representative stress-strain approach. The representative stressstrain method, introduced in 2008 in ISO/TR29381, directly correlates the stress and strain under the indenter to the true stress and strain of tensile testing by defining representative functions. Using this technique, we successfully estimate the yield strength and tensile strength of structural metallic materials and also obtain profiles of the weld-zone tensile properties.


Author(s):  
Joao F. Silva ◽  
Joao P. Nunes ◽  
Joao C. Velosa

Polymer composites are an excellent alternative to replace more traditional materials in the fabrication of pressure cylinders for common applications. They minimize the weight and improve the mechanical, impact and corrosion behavior, which are relevant characteristics for almost all current and future large scale pressure cylinder applications, such as liquid filters and accumulators, hydrogen cell storage vessels, oxygen bottles, etc. A new generation of composite pressure vessels has been studied in this work. The vessels consist on a thermoplastic liner wrapped with a filament winding glass fiber reinforced polymer matrix structure. A conventional 6-axis CNC controlled filament winding equipment was used to manufacture the thermosetting matrix composite vessels and adapted for production of thermoplastic matrix based composite vessels. The Abaqus 6.4.2 FEM package was used to predict the mechanical behavior of pressure vessels with capacity of approximately of 0.068 m3 (68 liters) for a 0.6 MPa (6 bar) pressure service condition according to the requirements of the EN 13923 standard, namely, the minimum internal burst pressure. The Tsai-Wu and von-Mises criteria were used to predict composite laminate and thermoplastic liner failures, respectively, considering the elasto-plastic behavior of the HDPE liner and the lamina properties deducted from the micromechanical models for composite laminates. Finally, the results obtained from the simulations were compared with those obtained from the experimental pressure tests made on the thermoplastic liners and final composite vessels.


Author(s):  
Weiju Ren ◽  
Robert Swindeman

Alloy 800H is currently under consideration for applications in the Next Generation Nuclear Plant at operational temperatures above 750°C. To provide supporting information in this paper at the attempt to facilitate the consideration, service requirements of the nuclear system for structural materials is first described; and then an extensive review of Alloy 800H is given on its codification with respect to development and research history, mechanical behavior and design allowables, metallurgical aging resistance, environmental effect considerations, data requirements and availability, weldments, as well as many other aspects relevant to the intended nuclear application; an finally further research and development activities to support the materials qualification are suggested.


Author(s):  
Benjamin M. E. Pellereau ◽  
Christopher M. Gill ◽  
Matthew Dawson ◽  
Paul R. Hurrell ◽  
John Francis ◽  
...  

This paper describes finite element (FE) modelling and neutron diffraction (ND) measurements to investigate the development of residual stresses in two different geometries of ferritic weld. All specimens were produced using SA508 Grade 3 steel plates, depositing a low carbon SD3 weld filler by mechanised TIG welding. The FE analyses were carried out using Abaqus/VFT and the behaviour of the SA508 steel was modelled using a simplified (Leblond) phase transformation model with isotropic hardening using VFT’s UMAT-WELD subroutine, which includes the change in volume due to phase transformation. Single bead-on-plate specimens were manufactured using a range of mechanised TIG welding parameters. One pass and three pass groove welds were also produced, in order to investigate the cyclic hardening behaviour of the materials, as well as phase transformation effects in a multi-pass weld. FE analyses were then performed to determine how accurately these effects could be modelled. During manufacture, a number of thermocouples were attached to each of the specimens in order to calibrate the heat input to the FE models. The residual stresses in each of the bead on plate welds, as well as the groove weld after the first and the third passes, were then measured using ND at the middle of the plate. The ND measurements for the three pass weld showed no significant cyclic hardening behaviour although some was predicted by the FE analysis. Another key finding of the FE modelling that was seen in all of the models was that the phase transformation acts to reduce the stress levels in the deposited weld metal leaving the largest tensile stresses in a ring at the outer edge of the full heat affected zone (HAZ). There are plans to refine the FE studies using improved material properties when material testing of SA508 and SD3 are completed in the near future.


Author(s):  
Dong-Feng Li ◽  
Noel P. O’Dowd ◽  
Catrin M. Davies ◽  
Shu-Yan Zhang

In this study, the deformation behavior of an austenitic stainless steel is investigated at the microscale by means of in-situ neutron diffraction (ND) measurements in conjunction with finite-element (FE) simulations. Results are presented in terms of (elastic) lattice strains for selected grain (crystallite) families. The FE model is based on a crystallographic (slip system based) representation of the deformation at the microscale. The present study indicates that combined in-situ ND measurement and micromechanical modelling provides an enhanced understanding of the mechanical response at the microscale in engineering steels.


Author(s):  
Ganesan S. Marimuthu ◽  
Per Thomas Moe ◽  
Bjarne Salberg ◽  
Junyan Liu ◽  
Henry Valberg ◽  
...  

Forge welding is an efficient welding method for tubular joints applicable in oil and gas industries due to its simplicity in carrying out the welding, absence of molten metal and filler metals, small heat-affected zone and high process flexibility. Prior to forging, the ends (bevels) of the joining tubes can be heated by torch or electromagnetic (EM) techniques, such as induction or high frequency resistance heating. The hot bevels are subsequently pressed together to establish the weld. The entire welding process can be completed within seconds and consistently produces superior quality joints of very high strength and adequate ductility. Industrial forge welding of tubes in the field is relatively expensive compared to laboratory testing. Moreover, at the initial stages of a new project sufficient quantities of pipe material may not be available for weldability testing. For these and several other reasons we have developed a highly efficient single station, solid state welding machine that carefully replicates the thermomechanical conditions of full-scale Shielded Active Gas Forge Welding Machines (SAG-FWM) for pipeline and casing applications. This representative laboratory machine can be used to weld tubular goods, perform material characterization and/or simulate welding and heat treatment procedures. The bevel shapes at mating ends of the tubes are optimized by ABAQUS® simulations to fine tune temperature distribution. The main aim of this paper is to establish a welding procedure for welding the tubular joints by the representative laboratory machine. The quality of the welded tubular joint was analyzed by macro/micro analyses, as well as hardness and bend tests. The challenges in optimizing the bevel shape and process parameters to weld high quality tubular joints are thoroughly discussed. Finally a welding procedure specification was established to weld the tubular joints in the representative laboratory machine.


Sign in / Sign up

Export Citation Format

Share Document