crack orientation
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 26)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 79 (11) ◽  
pp. 1081-1093
Author(s):  
Essam Moustafa ◽  
Khalid Almitani ◽  
Hossameldin Hussein

Crack orientation, a critical parameter, significantly affects the dynamic properties of composite structures. Experimental free vibration tests were conducted on carbon fiber–reinforced polymer (CFRP) composite plates at room temperature with different crack orientations. Dynamic properties such as damping ratio, natural frequency, and storage modulus were measured using a four-channel dynamic pulse analyzer. Multi-sensors were mounted on the test plate to pick up the vibration signals. Experimental modal analysis was performed to identify the first three mode shapes of the defective plates. A numerical model using ANSYS software was developed via parametric investigation to predict the correlation between crack orientation and resonant frequencies with corresponding mode shapes. The orientation of the introduced cracks had a significant effect on the dynamic properties of CFRP composites. Vertical cracks had the most significant influence on the eigenvalues of the mode shape frequencies. Furthermore, the damping ratio was an effective method to detect the cracks in CFRP composites.


Author(s):  
Mohamed Guesmi ◽  
Salaheddine Harzallah ◽  
Abdellah Kouzou

Crack orientation is a vital factor in the behavioral study of fractures, especially the study of crack propagation in structures that are under dynamic or fatigue loading. Indeed, many non-destructive testing (NDT) techniques have been developed recently for the detection of cracks such as the eddy current testing (ECT). However, the crack orientation has not been undertaken into consideration. In this paper, a NDT based on eddy current using 3D finite element modeling, is proposed for the determination of the crack orientation. The idea of this proposed technique benefits from the influences of crack orientation, which can be observed on the components of eddy current and the related magnetic flux density following the x, y axes, for the estimation of the crack angle orientation based on an interpolation criteria. The obtained results through the presented simulation prove the validity of the proposed technique for the detection of crack angle orientation.


2021 ◽  
Vol 25 ◽  
pp. 100613
Author(s):  
Ludwig Schöttl ◽  
Wilfried V. Liebig ◽  
Kay A. Weidenmann ◽  
Kaan Inal ◽  
Peter Elsner

2021 ◽  
Author(s):  
Qian Chen ◽  
◽  
Feng Zhang ◽  
Lili Tian ◽  
Xiaoyang Zhang ◽  
...  

The evaluation of carbonate rocks with fractures, caves, and pores is of great significance in the search for reservoir sweet spots and the prediction of reservoir productivity. With the advancement of exploration and development technology, the targets of oil and gas exploration move to deep high temperature, high pressure (HPHT) formations drilled with oil-based mud systems. The existing fracture evaluation methods often rely on dipole acoustic logging, electrical or acoustic formation micro-imaging, which utilize the difference of rock and pore fluid petrophysical properties for fracture detection, but the adverse HPHT conditions are a huge challenge to evaluate reservoir structure by such means. The tracer imaging technology (TIT) which utilizes pulsed neutron technology and tagged proppant containing high absorption cross-section element has been proposed for crack evaluation after hydraulic fracturing, but a quantitative evaluation of crack parameters, due to their low sensitivity caused by neutron self-shielding, has not been feasible. In this paper, the combination of the new pulsed neutron tool with multi-detector array design and oil-based mud with high absorption cross-section element is used to achieve the crack parameter evaluation in carbonate reservoirs under oil-based mud invasion condition via tracer element imaging. The special oil-based mud is injected into the carbonate formation through the borehole to enhance the difference of the nuclear properties between crack and rock. A multi-detector array tool that contains four gamma detectors arranged in a ring with 90 degrees between detectors is adopted to acquire capture the gamma spectrum in different orientations. Here, a new crack inversion method adopting a joint of the multi-element characteristic peak is used to eliminate the influence of neutron self-shielding to improve the response sensitivity of crack and calculation accuracy. The new method is suitable for all pore fluid types. Meanwhile, the effect of formation backgrounds which consist of formation matrix, pore fluid, and borehole fluid on the quantitative evaluation is analyzed and discussed for limitations of this method. To improve the recognition accuracy of the parameters in the image, the digital imaging recognition method based on artificial intelligence is applied in crack imaging for the information extraction of crack orientation. The effect of formation background on the quantitative evaluation of crack parameters is analyzed and discussed. Quantitative evaluation of carbonate with fractures, caves, and cavities can be realized with the new tracer imaging technology, which eliminates the saturation effect caused by neutron self-shielding to improve the calculation precision of fracture width. Finally, an example of carbonate formation with multiple cracks and formation background is simulated utilizing a Monte Carlo N-Particle transport model (MCNP). The calculation results of the crack density and crack width are presented and the crack orientation is determined from crack imaging, which is consistent with the model set. The result verifies the feasibility of the method.


Author(s):  
Tao Du ◽  
Michael Blum ◽  
Chen Chen ◽  
Murali Gopal Muraleedharan ◽  
Adri C.T. van Duin ◽  
...  

2021 ◽  
Vol 79 (2) ◽  
pp. 136-148
Author(s):  
Xianghong Wang ◽  
Jun Liu ◽  
Zhimin Luo ◽  
Hongwei Hu

The existence of cracks in key components of engineering equipment is a huge threat to the safe operation of the equipment. The influence of four factors (length, location, orientation, and width of the crack) on the attenuation characteristic of signal propagation is studied through simulation and experiment. The orthogonal experimental design is applied to design the simulation scheme, and the signal affected by the four factors is simulated by the finite-difference time-domain method. The degree of influence of the different factors is evaluated by conducting an analysis of range and an analysis of variance. The results show that the influence of crack length and location on signal relative attenuation is more remarkable according to the significance level α = 0.05, followed by crack orientation and crack width. The attenuation trend in the experimental results is similar to the simulation. Therefore, the longer the crack length is, the easier it is to be detected by the acoustic wave technique, while the effect of crack orientation and crack width on identifying cracks is limited. The study successfully establishes the relationship between signal parameters and crack factors and offers a theoretical foundation for evaluating the status of cracks in key components.


Sign in / Sign up

Export Citation Format

Share Document