scholarly journals Simulation Model to Correlate Micro-structural Characteristics of Two-phase Steel with Ductile Crack Growth Resistance

2014 ◽  
Vol 3 ◽  
pp. 1573-1578 ◽  
Author(s):  
Hiroto Shoji ◽  
Mitsuru Ohata ◽  
Fumiyoshi Minami
Author(s):  
Satoshi Igi ◽  
Mitsuru Ohata ◽  
Takahiro Sakimoto ◽  
Kenji Oi ◽  
Joe Kondo

This paper presents experimental and analytical results focusing on the strain limit of X80 linepipe. Ductile crack growth behavior from a girth weld notch is simulated by FE analysis based on a proposed damage model and is compared with the experimental results. The simulation model for ductile crack growth accompanied by penetration through the wall thickness consists of two criteria. One is a criterion for ductile crack initiation from the notch-tip, which is described by the plastic strain at the notch tip, because the onset of ductile cracking can be expressed by constant plastic strain independent of the shape and size of the components and the loading mode. The other is a damage-based criterion for simulating ductile crack extension associated with damage evolution influenced by plastic strain in accordance with the stress triaxiality ahead of the extending crack tip. The proposed simulation model is applicable to prediction of ductile crack growth behaviors from a circumferentially-notched girth welded pipe with high internal pressure, which is subjected to tensile loading or bending (post-buckling) deformation.


Author(s):  
Takehisa Yamada ◽  
Mitsuru Ohata

Abstract The aim of this study is to propose damage model on the basis of the mechanism for ductile fracture related to void growth and to confirm the applicability of the proposed model to ductile crack growth simulation for steel. To figure out void growth behavior, elasto-plastic finite element analyses using unit cell model with an initial void were methodically performed. From the results of those analyses, it was evident that the relationships between normalized void volume fraction and normalized strain by each critical value corresponding to crack initiation were independent of stress-strain relationship of material and stress triaxiality state. Based on this characteristic associated with void growth, damage evolution law was derived. Then, using the damage evolution law, simple and phenomenological ductile damage model reflecting void growth behavior and ductility of material was proposed. To confirm the validation and application of proposed damage model, the damage model was implemented in finite element models and ductile crack growth resistance was simulated for cracked components were performed. Then, the simulated results were compared with experimental ones and it was found that the proposed damage model could accurately predict ductile crack growth resistance and was applicable to ductile crack growth simulation.


Sign in / Sign up

Export Citation Format

Share Document