Ductile Crack Extension Analysis for X80 Bending Deformation Using Damage-Based Model

Author(s):  
Satoshi Igi ◽  
Mitsuru Ohata ◽  
Takahiro Sakimoto ◽  
Kenji Oi ◽  
Joe Kondo

This paper presents experimental and analytical results focusing on the strain limit of X80 linepipe. Ductile crack growth behavior from a girth weld notch is simulated by FE analysis based on a proposed damage model and is compared with the experimental results. The simulation model for ductile crack growth accompanied by penetration through the wall thickness consists of two criteria. One is a criterion for ductile crack initiation from the notch-tip, which is described by the plastic strain at the notch tip, because the onset of ductile cracking can be expressed by constant plastic strain independent of the shape and size of the components and the loading mode. The other is a damage-based criterion for simulating ductile crack extension associated with damage evolution influenced by plastic strain in accordance with the stress triaxiality ahead of the extending crack tip. The proposed simulation model is applicable to prediction of ductile crack growth behaviors from a circumferentially-notched girth welded pipe with high internal pressure, which is subjected to tensile loading or bending (post-buckling) deformation.

2007 ◽  
Vol 539-543 ◽  
pp. 2186-2191 ◽  
Author(s):  
Mitsuru Ohata ◽  
Takuya Fukahori ◽  
Fumiyoshi Minami

This study pays attention to reveal the material properties that control resistance curve for ductile crack growth (CTOD-R curve) on the basis of the mechanism for ductile crack growth, so that the R-curve could be numerically predicted only from those properties. The crack growth tests using 3-point bend specimens with fatigue pre-crack were conducted for two steels that have different ductile crack growth resistance with almost the same CTOD level for crack initiation, whereas both steels have the same “Mechanical properties” in terms of strength and work hardenability. The observation of crack growth behaviors provided that different mechanisms between ductile crack initiations from fatigue pre-crack and subsequent growth process could be applied. It was found that two “Mechanical properties” associated with ductile damage of steel could mainly influence CTOD-R curve; one is a resistance of ductile crack initiation estimated with critical local strain for ductile cracking from the surface of notched specimen, and the other one is a dependence of stress triaxiality on ductility obtained with circumferentially notched round-bar specimens. The damage model for numerically simulating the R-curve was proposed taking the two “ductile properties” into account, where ductile crack initiation from crack-tip was in accordance with critical local strain based criterion, and subsequent crack growth GTN (Gurson-Tvergaard-Needleman) based triaxiality dependent damage criterion. The proposed model accurately predicted the measured R-curve for the two steels used with the same “strength properties” through ductile crack initiation to growth.


Author(s):  
Jong-Hyun Kim ◽  
Nak-Hyun Kim ◽  
Yun-Jae Kim ◽  
Do-Jun Shim

This paper proposes an element-size-dependent damage model to simulate ductile crack growth in full-scale cracked pipes. The proposed method is based on the stress-modified fracture strain damage model modified from stress reduction technique proposed previously by the authors. A modification is made that the critical accumulated damage for progressive cracking is assumed to be dependent on the element size. The proposed method is then compared with a circumferential through-wall cracked pipe test that was conducted during Degrade Piping Program[18]. The bending moment at crack initiation, maximum bending moment, crack extension, and J-integral values were calculated from the FE damage analysis. These results were compared with the experimental results. In addition, results obtained from an existing J-estimation scheme were provided for comparison. All results showed reasonable agreement. The results of the present study demonstrate that the element-size-dependent damage modeling can be applied to simulate the ductile crack growth behavior of a through-wall cracked pipe.


2005 ◽  
Vol 297-300 ◽  
pp. 2403-2409 ◽  
Author(s):  
Yoon Suk Chang ◽  
T.R. Lee ◽  
Jae Boong Choi ◽  
Young Jin Kim

The influences of stress triaxiality on ductile fracture have been emphasized to explain the geometry independent fracture resistance characteristics of specimens and structures during past two decades. For the estimation of this material behavior, two-parameter global approach and local approach can be used as case by case manner. Recently, the interests for the local approach and micro-mechanical damage model are increased again due to progress of computational environments. In this paper, the applicability of the local approach has been assessed through a series of finite element analyses incorporating both modified GTN model and Rousselier model. The ductile crack growth behaviors are examined to guarantee the transferability on different sizes and geometries of C(T) specimens and SE(T) specimens. The material fitting constants are determined from calibration of tensile tests and numerical analyses results, and used to simulate the fracture behaviors of typical specimens. Then, a comparison is drawn between the numerically estimated crack resistance curves and experimentally determined ones. The comparison results show a good agreement and the two damage models are regarded as promising solutions for ductile crack growth simulation.


Author(s):  
Takehisa Yamada ◽  
Mitsuru Ohata

Abstract The aim of this study is to propose damage model on the basis of the mechanism for ductile fracture related to void growth and to confirm the applicability of the proposed model to ductile crack growth simulation for steel. To figure out void growth behavior, elasto-plastic finite element analyses using unit cell model with an initial void were methodically performed. From the results of those analyses, it was evident that the relationships between normalized void volume fraction and normalized strain by each critical value corresponding to crack initiation were independent of stress-strain relationship of material and stress triaxiality state. Based on this characteristic associated with void growth, damage evolution law was derived. Then, using the damage evolution law, simple and phenomenological ductile damage model reflecting void growth behavior and ductility of material was proposed. To confirm the validation and application of proposed damage model, the damage model was implemented in finite element models and ductile crack growth resistance was simulated for cracked components were performed. Then, the simulated results were compared with experimental ones and it was found that the proposed damage model could accurately predict ductile crack growth resistance and was applicable to ductile crack growth simulation.


Author(s):  
Sai Deepak Namburu ◽  
Lakshmana Rao Chebolu ◽  
A. Krishnan Subramanian ◽  
Raghu Prakash ◽  
Sasikala Gomathy

Welding residual stress is one of the main concerns in the process of fabrication and operation because of failures in welded steel joints due to its potential effect on structural integrity. This work focuses on the effect of welding residual stress on the ductile crack growth behavior in AISI 316LN welded CT specimens. Two-dimensional plane strain model has been used to simulate the CT specimen. X-ray diffraction technique is used to obtain residual stress value at the SS 316LN weld joint. The GTN model has been employed to estimate the ductile crack growth behavior in the CT-specimen. Results show that residual stresses influence the ductile crack growth behavior. The effect of residual stress has also been investigated for cases with different initial void volume fraction, crack lengths.


Author(s):  
Kiminobu Hojo

Abstract Fitness for service rules and a calculation method for ductile crack growth under large scale plastic cyclic loading have not been established even for Mode I. In a paper presented at the PVP2018 conference the authors presented methods to establish how to determine the parameters of the combined hardening plasticity rule and applied it to simulate the ductile crack growth behavior of 1TCT specimens of the different load levels. Also, ΔJ calculations using the reference stress method, and a ΔJ-basis fatigue crack growth rate derived from that on ΔK-basis according to JSME rules for FFS were applied to estimate the crack growth under cyclic loading in excess of yield. Since in the 2018 paper identified some gaps were found between experiments and the predicted crack growth behavior, several equations of the reference stress method are evaluated in the present paper. Additionally, the prediction procedure using the ΔJ calculation by the reference stress method and the da/dN−ΔJ curve based on the JSME rules for FFS are applied to pipe fracture tests under cyclic loading. Their applicability is discussed for the case of an example piping system.


2000 ◽  
Vol 2000 (0) ◽  
pp. 433-434
Author(s):  
Masakazu YOSHINO ◽  
Yoshio URABE ◽  
Koji KOYAMA ◽  
Yasuhide ASADA

Author(s):  
Hyun-Suk Nam ◽  
Young-Ryun Oh ◽  
Jae-Jun Han ◽  
Chang-Young Oh ◽  
Yun-Jae Kim ◽  
...  

This paper provides simulation of ductile crack growth in full-scale cracked pipe tests using an element-size dependent damage model. This method is based on the stress-modified fracture strain damage model. The stress-modified fracture strain model is determined to be incremental damage in terms of stress triaxiality and fracture strain for dimple fracture from tensile test result with FE analyses technique. To validate the proposed method, this research analyses STPT 410 cracked pipes test at 300°C taken from CRIEPI (Central Research Institute of Electric Power Industry). In order to calibrate the stress-modified fractures strain model, tensile tests and fracture toughness tests were compared with simulated results using element-size dependent damage model. Tensile specimen and fracture toughness specimen were extracted from STPT 410 steel pipe. The calibrated damage model predicts ductile crack growth in 5 type circumferential cracked pipes bending test. And these results were compared with the experimental results. The results show that the proposed method can simulate ductile crack growth in full-scale cracked pipe tests.


Sign in / Sign up

Export Citation Format

Share Document