Fabrication and characterization of Pb1−xYbxTe-based alloy thin-film thermoelectric generators grown by thermal evaporation technique

2013 ◽  
Vol 16 (3) ◽  
pp. 612-618 ◽  
Author(s):  
A. Hmood ◽  
A. Kadhim ◽  
H. Abu Hassan
2020 ◽  
Vol 21 (1) ◽  
pp. 8
Author(s):  
Emy Mulyani ◽  
Tjipto Sujitno ◽  
Dessy Purbandari ◽  
Ferdiansjah Ferdiansjah ◽  
Sayono Sayono

This paper presents the research on the growth of ZnS:Ag:Cu thin film on a glass substrate as a radio-luminescent material. The SRIM/TRIM software is used to determine the optimum thickness based on an energy deposition depth of 5.485 MeV Am 241 alpha radiation source on ZnS:Ag:Cu material. To increase the adhesive strength of the coating, initially, the glass substrate is etched using a plasma glow discharged at 280°C for 15 minutes. Multiple coatings of ZnS:Ag:Cu were  etched on the glass substrate; this was carried out using a thermal evaporation technique to achieve the optimal thickness (based on SRIM/TRIM simulation). The thin film thickness was observed using a scanning electron microscope (SEM). The optical properties of the un-etched, etched glass substrate and thin-film were characterized using UV-Vis spectrometer. Based on SRIM/TRIM simulation, the optimal thickness is 22 mm which can be achieved by coating three times. From optical properties of ZnS:Ag:Cu thin film and after being analysed using Taue plot method, it is found that the energy gap of ZnS:Ag:Cu thin film is 2.48 eV. It can be concluded that the addition of Ag and Cu doped decrease the energy gap of ZnS (3.66 eV).


Vacuum ◽  
2020 ◽  
Vol 176 ◽  
pp. 109167
Author(s):  
Sina Rouhi ◽  
Jose Enrique Martinez-Medina ◽  
Mehtap Ozdemir ◽  
Mehmet Ertugrul ◽  
Gulnur Aygun ◽  
...  

2019 ◽  
Vol 969 ◽  
pp. 355-360 ◽  
Author(s):  
Piyush Patel ◽  
Vimal Patel ◽  
Sandip Vyas ◽  
Jaydev Patel ◽  
Himanshu Pavagadhi

The III-VI compound semiconductors are important for the fabrication of ionizing radiation detectors, solid-state electrodes, and photosensitive heterostructures, solar cell as well as ionic batteries. In this paper, In2Se2.7Sb0.3 thin films have been grown by thermal evaporation technique onto a with chemically clean glass substrate. Amorphous nature of the films has been discovered by UV-VIS spectrophotometer. The analysis by absorption spectra within the spectral range 200nm -900 nm has been used for the optical characterization of thin films. From these data the optical constants (absorption coefficient (α), refractive index (η), extinction coefficient (k)) and optical band gap (Eg) are studied. The results were discussed, and reported in detail.


Sign in / Sign up

Export Citation Format

Share Document