scholarly journals In situ alloying of NiTi: Influence of Laser Powder Bed Fusion (LBPF) scanning strategy on chemical composition

2021 ◽  
pp. 103007
Author(s):  
Agnieszka Chmielewska ◽  
Bartłomiej Wysocki ◽  
Joseph Buhagiar ◽  
Bartosz Michalski ◽  
Bogusława Adamczyk-Cieślak ◽  
...  
2017 ◽  
Vol 16 ◽  
pp. 35-48 ◽  
Author(s):  
Giulia Repossini ◽  
Vittorio Laguzza ◽  
Marco Grasso ◽  
Bianca Maria Colosimo

JOM ◽  
2017 ◽  
Vol 69 (12) ◽  
pp. 2725-2730 ◽  
Author(s):  
I. Yadroitsev ◽  
P. Krakhmalev ◽  
I. Yadroitsava

JOM ◽  
2020 ◽  
Vol 73 (1) ◽  
pp. 201-211 ◽  
Author(s):  
Benjamin Gould ◽  
Sarah Wolff ◽  
Niranjan Parab ◽  
Cang Zhao ◽  
Maria Cinta Lorenzo-Martin ◽  
...  

Author(s):  
Chaitanya Krishna Prasad Vallabh ◽  
Yubo Xiong ◽  
Xiayun Zhao

Abstract In-situ monitoring of a Laser Powder-Bed Fusion (LPBF) additive manufacturing process is crucial in enhancing the process efficiency and ensuring the built part integrity. In this work, we present an in-situ monitoring method using an off-axis camera for monitoring layer-wise process anomalies. The in-situ monitoring is performed with a spatial resolution of 512 × 512 pixels, with each pixel representing 250 × 250 μm and a relatively high data acquisition rate of 500 Hz. An experimental study is conducted by using the developed in-situ off-axis method for monitoring the build process for a standard tensile bar. Real-time video data is acquired for each printed layer. Data analytics methods are developed to identify layer-wise anomalies, observe powder bed characteristics, reconstruct 3D part structure, and track the spatter dynamics. A deep neural network architecture is trained using the acquired layer-wise images and tested by images embedded with artificial anomalies. The real-time video data is also used to perform a preliminary spatter analysis along the laser scan path. The developed methodology is aimed to extract as much information as possible from a single set of camera video data. It will provide the AM community with an efficient and capable process monitoring tool for process control and quality assurance while using LPBF to produce high-standard components in industrial (such as, aerospace and biomedical industries) applications.


2020 ◽  
Vol 32 ◽  
pp. 100980 ◽  
Author(s):  
Kai Dietrich ◽  
Johannes Diller ◽  
Sophie Dubiez-Le Goff ◽  
Dominik Bauer ◽  
Pierre Forêt ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Itziar Serrano-Munoz ◽  
Tatiana Mishurova ◽  
Tobias Thiede ◽  
Maximilian Sprengel ◽  
Arne Kromm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document