Nitrogen-doped carbon black supported Pt–M (M = Pd, Fe, Ni) alloy catalysts for oxygen reduction reaction in proton exchange membrane fuel cell

2019 ◽  
Vol 13 ◽  
pp. 374-381 ◽  
Author(s):  
Heena Yang ◽  
Youngdon Ko ◽  
Woonghee Lee ◽  
Andreas Züttel ◽  
Whajung Kim
2018 ◽  
Vol 778 ◽  
pp. 275-282
Author(s):  
Noaman Khan ◽  
Saim Saher ◽  
Xuan Shi ◽  
Muhammad Noman ◽  
Mujahid Wasim Durani ◽  
...  

Highly porous ZIF-67 (Zeolitic imidazole framework) has a conductive crystalline metal organic framework (MOF) structure which was served as a precursor and template for the preparation of nitrogen-doped carbon nanotubes (NCNTs) electrocatalysts. As a first step, the chloroplatinic acid, a platinum (Pt) precursor was infiltrated in ZIF-67 with a precise amount to obtain 0.12 mg.cm-2 Pt loading. Later, the infiltrated structure was calcined at 700°C in Ar:H2 (90:10 vol%) gas mixture. Multi-walled nitrogen-doped carbon nanotubes were grown on the surface of ZIF-67 crystals following thermal activation at 700°C. The resulting PtCo-NCNTs electrocatalysts were deposited on Nafion-212 solid electrolyte membrane by spray technique to study the oxygen reduction reaction (ORR) in the presence of H2/O2 gases in a temperature range of 50-70°C. The present study elucidates the performance of nitrogen-doped carbon nanotubes ORR electrocatalysts derived from ZIF-67 and the effects of membrane electrode assembly (MEA) steaming on the performance of proton exchange membrane fuel cell (PEMFC) employing PtCo-NCNTs as ORR electrocatalysts. We observed that the peak power density at 70°C was 450 mW/cm2 for steamed membrane electrode assembly (MEA) compared to 392 mW/cm2 for an identical MEA without steaming.


Nanoscale ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 2542-2554 ◽  
Author(s):  
Mohanraju Karuppannan ◽  
Ji Eun Park ◽  
Hyo Eun Bae ◽  
Yong-Hun Cho ◽  
Oh Joong Kwon

Nitrogen-doped carbon-encapsulated non-noble metals are promising electrocatalytic alternatives to Pt for the oxygen reduction reaction (ORR).


Sign in / Sign up

Export Citation Format

Share Document