Power generation scheduling algorithm using dynamic programming

2009 ◽  
Vol 71 (12) ◽  
pp. e641-e650 ◽  
Author(s):  
Youakim Al-Kalaani
1991 ◽  
Vol 138 (1) ◽  
pp. 39 ◽  
Author(s):  
R.E. Rice ◽  
W.M. Grady ◽  
W.G. Lesso ◽  
A.H. Noyola ◽  
M.E. Connolly

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1392 ◽  
Author(s):  
Iram Parvez ◽  
JianJian Shen ◽  
Mehran Khan ◽  
Chuntian Cheng

The hydro generation scheduling problem has a unit commitment sub-problem which deals with start-up/shut-down costs related hydropower units. Hydro power is the only renewable energy source for many countries, so there is a need to find better methods which give optimal hydro scheduling. In this paper, the different optimization techniques like lagrange relaxation, augmented lagrange relaxation, mixed integer programming methods, heuristic methods like genetic algorithm, fuzzy logics, nonlinear approach, stochastic programming and dynamic programming techniques are discussed. The lagrange relaxation approach deals with constraints of pumped storage hydro plants and gives efficient results. Dynamic programming handles simple constraints and it is easily adaptable but its major drawback is curse of dimensionality. However, the mixed integer nonlinear programming, mixed integer linear programming, sequential lagrange and non-linear approach deals with network constraints and head sensitive cascaded hydropower plants. The stochastic programming, fuzzy logics and simulated annealing is helpful in satisfying the ramping rate, spinning reserve and power balance constraints. Genetic algorithm has the ability to obtain the results in a short interval. Fuzzy logic never needs a mathematical formulation but it is very complex. Future work is also suggested.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5345
Author(s):  
Zhiqiang Jiang ◽  
Peibing Song ◽  
Xiang Liao

In order to analyze the year-end water level of multi-year regulating reservoir of the cascade hydropower system, this paper studied the joint operation optimization model of cascade reservoirs and its solving method based on multi-dimensional dynamic programming, and analyzed the power generation impact factors of cascade system that contains multi-year regulating reservoir. In particular, taking the seven reservoirs in the middle and lower reaches of Yalong River as an example, the optimal year-end water levels of multi-year regulating reservoir under the multi-year average situation and different inflow frequencies situation were studied. Based on the optimal calculation results of multi-dimensional dynamic programming, the inflow frequency difference considered operation rule of year-end water level of Lianghekou reservoir was extracted using the least square principle. The simulation results showed that, compared with the fixed year-end water level in multi-year, the extracted rule can improve the cascade power generation by more than 400 million kWh in an average year, representing an increase of 0.4%. This result means that the extracted rule can give full play to the regulation performance of multi-year regulating reservoir and improve the conversion efficiency of hydropower resources in cascade system. This is of great significance to the practical operation of cascade reservoirs system that contains multi-year regulating reservoir.


Author(s):  
Chaoyue Zhao ◽  
Yonghong Chen ◽  
Yongpei Guan ◽  
Qianfan Wang ◽  
Xing Wang

Sign in / Sign up

Export Citation Format

Share Document