scholarly journals Ground state of a magnetic nonlinear Choquard equation

2019 ◽  
Vol 181 ◽  
pp. 189-199 ◽  
Author(s):  
H. Bueno ◽  
G.G. Mamani ◽  
G.A. Pereira
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Tianfang Wang ◽  
Wen Zhang

AbstractIn this paper we study the existence and multiplicity of solutions for the following nonlinear Choquard equation: $$\begin{aligned} -\Delta u+V(x)u=\bigl[ \vert x \vert ^{-\mu }\ast \vert u \vert ^{p}\bigr] \vert u \vert ^{p-2}u,\quad x \in \mathbb{R}^{N}, \end{aligned}$$ − Δ u + V ( x ) u = [ | x | − μ ∗ | u | p ] | u | p − 2 u , x ∈ R N , where $N\geq 3$ N ≥ 3 , $0<\mu <N$ 0 < μ < N , $\frac{2N-\mu }{N}\leq p<\frac{2N-\mu }{N-2}$ 2 N − μ N ≤ p < 2 N − μ N − 2 , ∗ represents the convolution between two functions. We assume that the potential function $V(x)$ V ( x ) satisfies general periodic condition. Moreover, by using variational tools from the Nehari manifold method developed by Szulkin and Weth, we obtain the existence results of ground state solutions and infinitely many pairs of geometrically distinct solutions for the above problem.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 151
Author(s):  
Huxiao Luo ◽  
Shengjun Li ◽  
Chunji Li

In this paper, we study a class of nonlinear Choquard equation driven by the fractional Laplacian. When the potential function vanishes at infinity, we obtain the existence of a ground state solution for the fractional Choquard equation by using a non-Nehari manifold method. Moreover, in the zero mass case, we obtain a nontrivial solution by using a perturbation method. The results improve upon those in Alves, Figueiredo, and Yang (2015) and Shen, Gao, and Yang (2016).


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Zhang ◽  
Qiongfen Zhang

AbstractIn this paper, we focus on the existence of solutions for the Choquard equation $$\begin{aligned} \textstyle\begin{cases} {-}\Delta {u}+V(x)u=(I_{\alpha }* \vert u \vert ^{\frac{\alpha }{N}+1}) \vert u \vert ^{ \frac{\alpha }{N}-1}u+\lambda \vert u \vert ^{p-2}u,\quad x\in \mathbb{R}^{N}; \\ u\in H^{1}(\mathbb{R}^{N}), \end{cases}\displaystyle \end{aligned}$$ { − Δ u + V ( x ) u = ( I α ∗ | u | α N + 1 ) | u | α N − 1 u + λ | u | p − 2 u , x ∈ R N ; u ∈ H 1 ( R N ) , where $\lambda >0$ λ > 0 is a parameter, $\alpha \in (0,N)$ α ∈ ( 0 , N ) , $N\ge 3$ N ≥ 3 , $I_{\alpha }: \mathbb{R}^{N}\to \mathbb{R}$ I α : R N → R is the Riesz potential. As usual, $\alpha /N+1$ α / N + 1 is the lower critical exponent in the Hardy–Littlewood–Sobolev inequality. Under some weak assumptions, by using minimax methods and Pohožaev identity, we prove that this problem admits a ground state solution if $\lambda >\lambda _{*}$ λ > λ ∗ for some given number $\lambda _{*}$ λ ∗ in three cases: (i) $2< p<\frac{4}{N}+2$ 2 < p < 4 N + 2 , (ii) $p=\frac{4}{N}+2$ p = 4 N + 2 , and (iii) $\frac{4}{N}+2< p<2^{*}$ 4 N + 2 < p < 2 ∗ . Our result improves the previous related ones in the literature.


2019 ◽  
Vol 150 (2) ◽  
pp. 921-954 ◽  
Author(s):  
Fashun Gao ◽  
Edcarlos D. da Silva ◽  
Minbo Yang ◽  
Jiazheng Zhou

AbstractIn this paper, we consider the nonlinear Choquard equation $$-\Delta u + V(x)u = \left( {\int_{{\open R}^N} {\displaystyle{{G(u)} \over { \vert x-y \vert ^\mu }}} \,{\rm d}y} \right)g(u)\quad {\rm in}\;{\open R}^N, $$ where 0 < μ < N, N ⩾ 3, g(u) is of critical growth due to the Hardy–Littlewood–Sobolev inequality and $G(u)=\int ^u_0g(s)\,{\rm d}s$. Firstly, by assuming that the potential V(x) might be sign-changing, we study the existence of Mountain-Pass solution via a nonlocal version of the second concentration- compactness principle. Secondly, under the conditions introduced by Benci and Cerami , we also study the existence of high energy solution by using a nonlocal version of global compactness lemma.


Sign in / Sign up

Export Citation Format

Share Document