scholarly journals Non-local porous media equations with fractional time derivative

2021 ◽  
Vol 211 ◽  
pp. 112486
Author(s):  
Esther Daus ◽  
Maria Pia Gualdani ◽  
Jingjing Xu ◽  
Nicola Zamponi ◽  
Xinyu Zhang
2020 ◽  
Vol 25 (4) ◽  
pp. 74
Author(s):  
Fernando Alcántara-López ◽  
Carlos Fuentes ◽  
Fernando Brambila-Paz ◽  
Jesús López-Estrada

The present work proposes a new model to capture high heterogeneity of single phase flow in naturally fractured vuggy reservoirs. The model considers a three porous media reservoir; namely, fractured system, vugular system and matrix; the case of an infinite reservoir is considered in a full-penetrating wellbore. Furthermore, the model relaxes classic hypotheses considering that matrix permeability has a significant impact on the pressure deficit from the wellbore, reaching the triple permeability and triple porosity model wich allows the wellbore to be fed by all the porous media and not exclusively by the fractured system; where it is considered a pseudostable interporous flow. In addition, it is considered the anomalous flow phenomenon from the pressure of each independent porous medium and as a whole, through the temporal fractional derivative of Caputo type; the resulting phenomenon is studied for orders in the fractional derivatives in (0, 2), known as superdiffusive and subdiffusive phenomena. Synthetic results highlight the effect of anomalous flows throughout the entire transient behavior considering a significant permeability in the matrix and it is contrasted with the effect of an almost negligible matrix permeability. The model is solved analytically in the Laplace space, incorporating the Tartaglia–Cardano equations.


2020 ◽  
Vol 23 (4) ◽  
pp. 1125-1140
Author(s):  
Andriy Lopushansky ◽  
Oleh Lopushansky ◽  
Anna Szpila

AbstractAn fractional abstract Cauchy problem generated by a sectorial operator is investigated. An inequality of coercivity type for its solution with respect to a complex interpolation scale generated by a sectorial operator with the same parameters is established. An application to differential parabolic initial-boundary value problems in bounded domains with a fractional time derivative is shown.


2007 ◽  
Vol 28 (1) ◽  
pp. 35-59 ◽  
Author(s):  
Jean Dolbeault ◽  
Ivan Gentil ◽  
Arnaud Guillin ◽  
Feng-Yu Wang

2008 ◽  
Vol 51 (2) ◽  
pp. 529-543 ◽  
Author(s):  
Feng-Yu Wang

AbstractCorresponding to known results on Orlicz–Sobolev inequalities which are stronger than the Poincaré inequality, this paper studies the weaker Orlicz–Poincaré inequality. More precisely, for any Young function $\varPhi$ whose growth is slower than quadric, the Orlicz–Poincaré inequality$$ \|f\|_\varPhi^2\le C\E(f,f),\qquad\mu(f):=\int f\,\mathrm{d}\mu=0 $$is studied by using the well-developed weak Poincaré inequalities, where $\E$ is a conservative Dirichlet form on $L^2(\mu)$ for some probability measure $\mu$. In particular, criteria and concrete sharp examples of this inequality are presented for $\varPhi(r)=r^p$ $(p\in[1,2))$ and $\varPhi(r)= r^2\log^{-\delta}(\mathrm{e} +r^2)$ $(\delta>0)$. Concentration of measures and analogous results for non-conservative Dirichlet forms are also obtained. As an application, the convergence rate of porous media equations is described.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Mohamed S. Al-luhaibi

This paper presents the approximate analytical solutions to solve the nonlinear gas dynamics and coupled Burger’s equations with fractional time derivative. By using initial values, the explicit solutions of the equations are solved by using a reliable algorithm. Numerical results show that the new iterative method is easy to implement and accurate when applied to time-fractional partial differential equations.


2011 ◽  
Vol 27 (9) ◽  
pp. 1671-1696 ◽  
Author(s):  
Guo Li Zhou ◽  
Zhen Ting Hou

Sign in / Sign up

Export Citation Format

Share Document