The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction

Nano Energy ◽  
2018 ◽  
Vol 46 ◽  
pp. 347-355 ◽  
Author(s):  
Jia Guo ◽  
Xiaomei Yan ◽  
Qin Liu ◽  
Qiang Li ◽  
Xiao Xu ◽  
...  
2020 ◽  
Author(s):  
Travis Marshall-Roth ◽  
Nicole J. Libretto ◽  
Alexandra T. Wrobel ◽  
Kevin Anderton ◽  
Nathan D. Ricke ◽  
...  

Iron- and nitrogen-doped carbon (Fe-N-C) materials are leading candidates to replace platinum in fuel cells, but their active site structures are poorly understood. A leading postulate is that iron active sites in this class of materials exist in an Fe-N<sub>4</sub> pyridinic ligation environment. Yet, molecular Fe-based catalysts for the oxygen reduction reaction (ORR) generally feature pyrrolic coordination and pyridinic Fe-N<sub>4</sub> catalysts are, to the best of our knowledge, non-existent. We report the synthesis and characterization of a molecular pyridinic hexaazacyclophane macrocycle, (phen<sub>2</sub>N<sub>2</sub>)Fe, and compare its spectroscopic, electrochemical, and catalytic properties for oxygen reduction to a prototypical Fe-N-C material, as well as iron phthalocyanine, (Pc)Fe, and iron octaethylporphyrin, (OEP)Fe, prototypical pyrrolic iron macrocycles. N 1s XPS signatures for coordinated N atoms in (phen<sub>2</sub>N<sub>2</sub>)Fe are positively shifted relative to (Pc)Fe and (OEP)Fe, and overlay with those of Fe-N-C. Likewise, spectroscopic XAS signatures of (phen<sub>2</sub>N<sub>2</sub>)Fe are distinct from those of both (Pc)Fe and (OEP)Fe, and are remarkably similar to those of Fe-N-C with compressed Fe–N bond lengths of 1.97 Å in (phen<sub>2</sub>N<sub>2</sub>)Fe that are close to the average 1.94 Å length in Fe-N-C. Electrochemical studies establish that both (Pc)Fe and (phen<sub>2</sub>N<sub>2</sub>)Fe have relatively high Fe(III/II) potentials at ~0.6 V, ~300 mV positive of (OEP)Fe. The ORR onset potential is found to directly correlate with the Fe(III/II) potential leading to a ~300 mV positive shift in the onset of ORR for (Pc)Fe and (phen<sub>2</sub>N<sub>2</sub>)Fe relative to (OEP)Fe. Consequently, the ORR onset for (phen<sub>2</sub>N<sub>2</sub>)Fe and (Pc)Fe is within 150 mV of Fe-N-C. Unlike (OEP)Fe and (Pc)Fe, (phen<sub>2</sub>N<sub>2</sub>)Fe displays excellent selectivity for 4-electron ORR with <4% maximum H<sub>2</sub>O<sub>2</sub> production, comparable to Fe-N-C materials. The aggregate spectroscopic and electrochemical data establish (phen<sub>2</sub>N<sub>2</sub>)Fe as a pyridinic iron macrocycle that effectively models Fe-N-C active sites, thereby providing a rich molecular platform for understanding this important class of catalytic materials.<p><b></b></p>


Author(s):  
wei yang ◽  
Wenbin Gong ◽  
Yanhong Shi ◽  
Xiaona Wang ◽  
Yulian Wang ◽  
...  

Platinum nanocatalysts mediated by 3d transition metals show improved activity for oxygen reduction reaction (ORR) but poor activity for oxygen evolution reaction (OER). Herein, we report the preparation of a...


ACS Catalysis ◽  
2013 ◽  
Vol 3 (6) ◽  
pp. 1263-1271 ◽  
Author(s):  
Yuanyuan Jiang ◽  
Yizhong Lu ◽  
Xiangyu Lv ◽  
Dongxue Han ◽  
Qixian Zhang ◽  
...  

2019 ◽  
Vol 5 (8) ◽  
pp. eaaw2322 ◽  
Author(s):  
Peng Peng ◽  
Lei Shi ◽  
Feng Huo ◽  
Chunxia Mi ◽  
Xiaohong Wu ◽  
...  

Nitrogen-coordinated single-atom catalysts (SACs) have emerged as a frontier for electrocatalysis (such as oxygen reduction) with maximized atom utilization and highly catalytic activity. The precise design and operable synthesis of SACs are vital for practical applications but remain challenging because the commonly used high-temperature treatments always result in unpredictable structural changes and randomly created single atoms. Here, we develop a pyrolysis-free synthetic approach to prepare SACs with a high electrocatalytic activity using a fully π-conjugated iron phthalocyanine (FePc)–rich covalent organic framework (COF). Instead of randomly creating Fe-nitrogen moieties on a carbon matrix (Fe-N-C) through pyrolysis, we rivet the atomically well-designed Fe-N-C centers via intermolecular interactions between the COF network and the graphene matrix. The as-synthesized catalysts demonstrate exceptional kinetic current density in oxygen reduction catalysis (four times higher than the benchmark Pt/C) and superior power density and cycling stability in Zn-air batteries compared with Pt/C as air electrodes.


2021 ◽  
Vol 280 ◽  
pp. 119437 ◽  
Author(s):  
Xuezheng Yu ◽  
Shoujuan Lai ◽  
Shishan Xin ◽  
Shuai Chen ◽  
Xiaoli Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document