scholarly journals Quantitative evaluation of crack depths and angles for pulsed eddy current non-destructive testing

2019 ◽  
Vol 102 ◽  
pp. 180-188 ◽  
Author(s):  
Faris Nafiah ◽  
Ali Sophian ◽  
Md Raisuddin Khan ◽  
Ilham Mukriz Zainal Abidin
Author(s):  
Wei Guo ◽  
Bin Gao ◽  
Gui Yun Tian ◽  
Dan Si

Comprehensive non-destructive testing (NDT) for pipelines is a critical and challenging task. This paper proposes a novel physic perspective fusion NDT method of electromagnetic acoustic transducer (EMAT) and pulsed Eddy current testing (PECT) for detecting hybrid defects. This transceiver-integrated fusion sensor structure can simultaneously excite ultrasound and pulsed eddy current. Therefore, the generated ultrasound is applied to detect deep defects, while the eddy current detects surface defects. The theoretical derivation of EMAT and PECT fusion mechanism has been developed for analysis and interpretation of the results. In addition, numerical simulation on the detection of hybrid defects including surface defects with different width, depth and multiple bottom-thinning defects has been conducted. Experiments on both ferromagnetic and non-ferromagnetic material verify the feasibility of composite detection. Finally, tests have been validated on pipeline with weld defects, and the results show that the composite inspection method is capable of monitoring thickness variations and inspecting surface defects. This article is part of the theme issue ‘Advanced electromagnetic non-destructive evaluation and smart monitoring’.


Author(s):  
Faris Nafiah ◽  
Ali Sophian ◽  
Md Raisuddin Khan ◽  
Ilham Mukriz Zainal Abidin

<p><span style="font-family: Arial; font-size: small;">Thanks to its wide bandwidth, pulsed eddy current (PEC) has attracted researchers of various backgrounds in the attempt to exploit its benefits in Non-destructive Testing (NDT). The ability of modelling PEC problems would be a precious tool in this attempt as it would help improve the understanding of the interaction between the transient magnetic field and the specimen, among others. In this work, a Finite Element Modelling (FEM) has been developed and experimental test data have been gathered for its validation. The investigated cases were simulated surface cracks of different sizes and angles. The study involved looking at time-domain PEC signals at different spatial distances from the cracks’ faces, which would particularly be useful for modelling scanning PEC probes. The obtained results show a good agreement between the FEM and experiment, demonstrating that the modelling technique can be used with confidence for solving similar problems.</span></p>


2019 ◽  
Vol 9 (20) ◽  
pp. 4199 ◽  
Author(s):  
Hanchao Li ◽  
Yating Yu ◽  
Linfeng Li ◽  
Bowen Liu

Non-destructive testing (NDT) plays a crucial role in large scale industrial production such as in the nuclear industry and bridge structures where even a small crack can lead to severe accidents. The pulsed eddy current infrared thermography testing method, as a classic non-destructive testing technology, is proposed to detect cracks in the presence of excitation sources that cause temperature changes in the vicinity of defects, which is higher than normal area. However, in the vicinity of the excitation sources, the temperature is higher than normal even if there is no defect. Traditional infrared image enhancing algorithms do not work efficiently when processing infrared images because the colors in the images represent the temperature. To address this, a novel algorithm is proposed in this paper. A weighted estimation algorithm is proposed because each pixel value has a strong relationship with its neighboring pixels. The value of each pixel is determined by calculating the values of its neighboring pixels with a specific step-size and the correlation coefficients between them. These coefficients are obtained by calculating the differences between the pixels. The experimental results indicated that the outline of the welding defect became significantly clearer after being processed using the proposed algorithm, which can eliminate the errors caused by the excitation source.


Sign in / Sign up

Export Citation Format

Share Document