scholarly journals A technique for the reduction of pulse pile-up effect in pulse-shape discrimination of organic scintillation detectors

2020 ◽  
Vol 52 (2) ◽  
pp. 360-365 ◽  
Author(s):  
M. Nakhostin
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
T. Marchi ◽  
F. Pino ◽  
C. L. Fontana ◽  
A. Quaranta ◽  
E. Zanazzi ◽  
...  

2021 ◽  
Vol 253 ◽  
pp. 11002
Author(s):  
Caroline Holroyd ◽  
Michael Aspinall ◽  
Tom Deakin

The accurate simulation of the temporal pulse shapes from organic scintillation detectors capable of pulse shape discrimination (PSD) presents the opportunity to assess the pulse shape discrimination of these detectors prior to fabrication. The aim of this study is the simulation of the temporal pulse shapes from EJ-276, a PSD-capable plastic scintillator developed by Eljen Technologies. PSD plastic scintillators are increasingly replacing organic liquid scintillators for the detection of neutrons in the presence of mixed radiation fields for nuclear security applications. Plastics are inexpensive, robust and can be fabricated in a variety of shapes and sizes. They offer a solid-state alternative to liquid scintillators which can be difficult to transport due to the risk of leakage. However, the PSD performance of plastic scintillators has been observed to decrease due to various factors which combine to influence the overall shape of the pulse. The Monte Carlo toolkit Geant4 has been used to simulate the temporal pulse shapes from an EJ-276 plastic scintillator coupled to a photomultiplier tube (PMT). All three decay time components of EJ-276 have been modelled, utilising new methods available in the latest version of Geant4, for two different scintillator geometries. The simulated n/γ pulse shapes reproduce the features important for PSD. Future work will involve integrating the temporal response of the PMT with existing pulse shape simulations. Simulated data will then be compared with experimental measurements.


2015 ◽  
Vol 103 (1) ◽  
pp. 15-25
Author(s):  
Gert Langrock ◽  
Norbert Wiehl ◽  
Hans-Otto Kling ◽  
Matthias Mendel ◽  
Andrea Nähler ◽  
...  

Abstract A typical problem in low-level liquid scintillation (LS) counting is the identification of α particles in the presence of a high background of β and γ particles. Especially the occurrence of β-β and β-γ pile-ups may prevent the unambiguous identification of an α signal by commonly used analog electronics. In this case, pulse-shape discrimination (PSD) and pile-up rejection (PUR) units show an insufficient performance. This problem was also observed in own earlier experiments on the chemical behaviour of transactinide elements using the liquid-liquid extraction system SISAK in combination with LS counting. α-particle signals from the decay of the transactinides could not be unambiguously assigned. However, the availability of instruments for the digital recording of LS pulses changes the situation and provides possibilities for new approaches in the treatment of LS pulse shapes. In a SISAK experiment performed at PSI, Villigen, a fast transient recorder, a PC card with oscilloscope characteristics and a sampling rate of 1 giga samples s−1 (1 ns per point), was used for the first time to record LS signals. It turned out, that the recorded signals were predominantly α, β-β and β-γ pile up, and fission events. This paper describes the subsequent development and use of artificial neural networks (ANN) based on the method of “back-propagation of errors” to automatically distinguish between different pulse shapes. Such networks can “learn” pulse shapes and classify hitherto unknown pulses correctly after a learning period. The results show that ANN in combination with fast digital recording of pulse shapes can be a powerful tool in LS spectrometry even at high background count rates.


Sign in / Sign up

Export Citation Format

Share Document