scholarly journals Fracture simulation of SFR metallic fuel pin using finite element damage analysis method

Author(s):  
Hyun-Woo Jung ◽  
Hyun-Kyu Song ◽  
Yun-Jae Kim ◽  
Dong-Wook Jerng
Author(s):  
Taide Tan ◽  
Randy Clarksean ◽  
Yitung Chen ◽  
Darrell Pepper ◽  
Mitchell K. Meyer

The filling and solidification process for melt casting a metallic fuel pin is considered. The problem was analyzed numerically using the commercial finite element software package FIDAP (Fluent, Inc.). Numerical simulations are performed to study process parameters that could impact the solidification of the melt within the mold. A Metallic Fuel Pin mold is a long, thin, straw-like pipe, which has a cylindrical shape. The fluid is a high-temperature melt mixture of Am, Pu, and Zr. which is considered as an incompressible Newtonian fluid. Filling velocities and filling pressures are varied to study what impact these parameters might have on flow and solidification within the melt.


2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


2021 ◽  
Vol 544 ◽  
pp. 152711
Author(s):  
Fidelma G. Di Lemma ◽  
Karen E. Wright ◽  
Luca Capriotti ◽  
Adam X. Zabriskie ◽  
Alexander J. Winston ◽  
...  
Keyword(s):  

2013 ◽  
Vol 791-793 ◽  
pp. 718-721
Author(s):  
Man Man Xu ◽  
Yu Li ◽  
Sai Nan Xie ◽  
Qing Hua Chen

To analyse the road-header rack and pinion by using the finite element analysis software COSMOS/WORKS. Compared to the traditional analytic calculation and numerical analysis method, it is more intuitively get 28 ° pressure angle spur gear rack meshing stress and strain distribution, which can rack and pinion improvements designed to provide scientific reference.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Zhenli Yang

With the continuous development of urban construction projects in HebeiProvince, the rise and development of high-rise buildings and undergroundengineering, the design and research of foundation pit support structure has become more and more important. The design of the foundation pit support structure directly affects the settlement and position changes of the building itself and the surrounding stratum. In this paper, the characteristics of foundation pit support are analyzed, and the related theories of finite element analysis method are introduced. Combined with the actual situation of Hebei Province, the finite element analysis method is used to simulate the construction method of foundation pile anchor support structure system. The design was analyzed and studied.


Sign in / Sign up

Export Citation Format

Share Document