scholarly journals Effect of individual spiking activity on rhythm generation of central pattern generators

2004 ◽  
Vol 58-60 ◽  
pp. 535-540 ◽  
Author(s):  
Roberto Latorre ◽  
Francisco de Borja Rodrı́guez ◽  
Pablo Varona
2019 ◽  
Vol 16 (6) ◽  
pp. 172988141988528
Author(s):  
Yasushi Habu ◽  
Keiichiro Uta ◽  
Yasuhiro Fukuoka

We aim to design a neuromorphic controller for the locomotion of a quadruped robot with muscle-driven leg mechanisms. To this end, we use a simulated cat model; each leg of the model is equipped with three joints driven by six muscle models incorporating two-joint muscles. For each leg, we use a two-level central pattern generator consisting of a rhythm generation part to produce basic rhythms and a pattern formation part to synergistically activate a different set of muscles in each of the four sequential phases (swing, touchdown, stance, and liftoff). Conventionally, it was difficult for a quadruped model with such realistic neural systems and muscle-driven leg mechanisms to walk even on flat terrain, but because of our improved neural and mechanical components, our quadruped model succeeds in reproducing motoneuron activations and leg trajectories similar to those in cats and achieves stable three-dimensional locomotion at a variety of speeds. Moreover, the quadruped is capable of walking upslope and over irregular terrains and adapting to perturbations, even without adjusting the parameters.


2017 ◽  
Vol 27 (2) ◽  
pp. 40
Author(s):  
Hua WU ◽  
Zaihua RU ◽  
Congying XU ◽  
Xudong GU ◽  
Jianming FU

Author(s):  
Astrid A. Prinz

This chapter begins by defining central pattern generators (CPGs) and proceeds to focus on one of their core components, the timing circuit. After arguing why invertebrate CPGs are particularly useful for the study of neuronal circuit operation in general, the bulk of the chapter then describes basic mechanisms of CPG operation at the cellular, synaptic, and network levels, and how different CPGs combine these mechanisms in various ways. Finally, the chapter takes a semihistorical perspective to discuss whether or not the study of invertebrate CPGs has seen its prime and what it has contributed—and may continue to offer—to a wider understanding of neuronal circuits in general.


2001 ◽  
Vol 42 (4) ◽  
pp. 291-326 ◽  
Author(s):  
Pietro-Luciano Buono ◽  
Martin Golubitsky

2008 ◽  
Vol 27 (3-4) ◽  
pp. 423-443 ◽  
Author(s):  
Alexander Sproewitz ◽  
Rico Moeckel ◽  
Jérôme Maye ◽  
Auke Jan Ijspeert

2008 ◽  
Vol 12 (1-2) ◽  
pp. 264-269 ◽  
Author(s):  
Guang Lei Liu ◽  
Maki K. Habib ◽  
Keigo Watanabe ◽  
Kiyotaka Izumi

2012 ◽  
Vol 108 (3) ◽  
pp. 709-711 ◽  
Author(s):  
Yann Thibaudier ◽  
Marie-France Hurteau

Propriospinal pathways are thought to be critical for quadrupedal coordination by coupling cervical and lumbar central pattern generators (CPGs). However, the mechanisms involved in relaying information between girdles remain largely unexplored. Using an in vitro spinal cord preparation in neonatal rats, Juvin and colleagues ( Juvin et al. 2012 ) have recently shown sensory inputs from the hindlimbs have greater influence on forelimb CPGs than forelimb sensory inputs on hindlimb CPGs, in other words, a bottom-up control system. However, results from decerebrate cats suggest a top-down control system. It may be that both bottom-up and top-down control systems exist and that the dominance of one over the other is task or context dependent. As such, the role of sensory inputs in controlling quadrupedal coordination before and after injury requires further investigation.


Sign in / Sign up

Export Citation Format

Share Document