Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation

2013 ◽  
Vol 106 ◽  
pp. 115-125 ◽  
Author(s):  
Feng Zhao
2021 ◽  
Author(s):  
Lujia Lei ◽  
Chengmao Wu ◽  
Xiaoping Tian

Abstract Clustering algorithms with deep neural network have attracted wide attention of scholars. A deep fuzzy K-means clustering algorithm model with adaptive loss function and entropy regularization (DFKM) is proposed by combining automatic encoder and clustering algorithm. Although it introduces adaptive loss function and entropy regularization to improve the robustness of the model, its segmentation effect is not ideal for high noise; At the same time, its model does not use a convolutional auto-encoder, which is not suitable for high-dimensional images.Therefore, on the basis of DFKM, this paper focus on image segmentation, combine neighborhood median and mean information of current pixel, introduce neighborhood information of membership degree, and extend Euclidean distance to kernel space by using kernel function, propose a dual-neighborhood information constrained deep fuzzy clustering based on kernel function (KDFKMS). A large number of experimental results show that compared with DFKM and classical image segmentation algorithms, this algorithm has stronger anti-noise robustness.


Author(s):  
Qiuyu Song ◽  
Chengmao Wu ◽  
Xiaoping Tian ◽  
Yue Song ◽  
Xiaokang Guo

AbstractFuzzy clustering algorithm (FCM) can be directly used to segment images, it takes no account of the neighborhood information of the current pixel and does not have a robust segmentation noise suppression. Fuzzy Local Information C-means Clustering (FLICM) is a widely used robust segmentation algorithm, which combines spatial information with the membership degree of adjacent pixels. In order to further improve the robustness of FLICM algorithm, non-local information is embedded into FLICM algorithm and a fuzzy C-means clustering algorithm has local and non-local information (FLICMLNLI) is obtained. When calculating distance from pixel to cluster center, FLICMLNLI algorithm considers two distances from current pixel and its neighborhood pixels to cluster center. However, the algorithm gives the same weight to two different distances, which incorrectly magnifies the importance of neighborhood information in calculating the distance, resulting in unsatisfactory image segmentation effects and loss of image details. In order to solve this problem, we raise an improved self-learning weighted fuzzy algorithm, which directly obtains different weights in distance calculation through continuous iterative self-learning, then the distance metric with the weights obtained from self-learning is embedded in the objective function of the fuzzy clustering algorithm in order to improve the segmentation performance and robustness of the algorithm. A large number of experiments on different types of images show that the algorithm can not only suppress the noise but also retain the details in the image, the effect of segmenting complex noise images is better, and it provides better image segmentation results than the existing latest fuzzy clustering algorithms.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Min Chen ◽  
Simone A. Ludwig

Image segmentation is one important process in image analysis and computer vision and is a valuable tool that can be applied in fields of image processing, health care, remote sensing, and traffic image detection. Given the lack of prior knowledge of the ground truth, unsupervised learning techniques like clustering have been largely adopted. Fuzzy clustering has been widely studied and successfully applied in image segmentation. In situations such as limited spatial resolution, poor contrast, overlapping intensities, and noise and intensity inhomogeneities, fuzzy clustering can retain much more information than the hard clustering technique. Most fuzzy clustering algorithms have originated from fuzzy c-means (FCM) and have been successfully applied in image segmentation. However, the cluster prototype of the FCM method is hyperspherical or hyperellipsoidal. FCM may not provide the accurate partition in situations where data consists of arbitrary shapes. Therefore, a Fuzzy C-Regression Model (FCRM) using spatial information has been proposed whose prototype is hyperplaned and can be either linear or nonlinear allowing for better cluster partitioning. Thus, this paper implements FCRM and applies the algorithm to color segmentation using Berkeley’s segmentation database. The results show that FCRM obtains more accurate results compared to other fuzzy clustering algorithms.


Sign in / Sign up

Export Citation Format

Share Document