color image segmentation
Recently Published Documents


TOTAL DOCUMENTS

881
(FIVE YEARS 100)

H-INDEX

40
(FIVE YEARS 9)

2022 ◽  
Vol 8 (1) ◽  
pp. 6
Author(s):  
Donatella Giuliani

In this research, we propose an unsupervised method for segmentation and edge extraction of color images on the HSV space. This approach is composed of two different phases in which are applied two metaheuristic algorithms, respectively the Firefly (FA) and the Artificial Bee Colony (ABC) algorithms. In the first phase, we performed a pixel-based segmentation on each color channel, applying the FA algorithm and the Gaussian Mixture Model. The FA algorithm automatically detects the number of clusters, given by histogram maxima of each single-band image. The detected maxima define the initial means for the parameter estimation of the GMM. Applying the Bayes’ rule, the posterior probabilities of the GMM can be used for assigning pixels to clusters. After processing each color channel, we recombined the segmented components in the final multichannel image. A further reduction in the resultant cluster colors is obtained using the inner product as a similarity index. In the second phase, once we have assigned all pixels to the corresponding classes of the HSV space, we carry out the second step with a region-based segmentation applied to the corresponding grayscale image. For this purpose, the bioinspired Artificial Bee Colony algorithm is performed for edge extraction.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1599
Author(s):  
Bowen Wu ◽  
Liangkuan Zhu ◽  
Jun Cao ◽  
Jingyu Wang

Multilevel thresholding segmentation of color images plays an important role in many fields. The pivotal procedure of this technique is determining the specific threshold of the images. In this paper, a hybrid preaching optimization algorithm (HPOA) for color image segmentation is proposed. Firstly, the evolutionary state strategy is adopted to evaluate the evolutionary factors in each iteration. With the introduction of the evolutionary state, the proposed algorithm has more balanced exploration-exploitation compared with the original POA. Secondly, in order to prevent premature convergence, a randomly occurring time-delay is introduced into HPOA in a distributed manner. The expression of the time-delay is inspired by particle swarm optimization and reflects the history of previous personal optimum and global optimum. To better verify the effectiveness of the proposed method, eight well-known benchmark functions are employed to evaluate HPOA. In the interim, seven state-of-the-art algorithms are utilized to compare with HPOA in the terms of accuracy, convergence, and statistical analysis. On this basis, an excellent multilevel thresholding image segmentation method is proposed in this paper. Finally, to further illustrate the potential, experiments are respectively conducted on three different groups of Berkeley images. The quality of a segmented image is evaluated by an array of metrics including feature similarity index (FSIM), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and Kapur entropy values. The experimental results reveal that the proposed method significantly outperforms other algorithms and has remarkable and promising performance for multilevel thresholding color image segmentation.


2021 ◽  
pp. 227-238
Author(s):  
P. Ganesan ◽  
B. S. Sathish ◽  
L. M. I. Leo Joseph ◽  
B. Girirajan ◽  
P. Anuradha ◽  
...  

2021 ◽  
Vol 7 (10) ◽  
pp. 208
Author(s):  
Giacomo Aletti ◽  
Alessandro Benfenati ◽  
Giovanni Naldi

Image segmentation is an essential but critical component in low level vision, image analysis, pattern recognition, and now in robotic systems. In addition, it is one of the most challenging tasks in image processing and determines the quality of the final results of the image analysis. Colour based segmentation could hence offer more significant extraction of information as compared to intensity or texture based segmentation. In this work, we propose a new local or global method for multi-label segmentation that combines a random walk based model with a direct label assignment computed using a suitable colour distance. Our approach is a semi-automatic image segmentation technique, since it requires user interaction for the initialisation of the segmentation process. The random walk part involves a combinatorial Dirichlet problem for a weighted graph, where the nodes are the pixel of the image, and the positive weights are related to the distances between pixels: in this work we propose a novel colour distance for computing such weights. In the random walker model we assign to each pixel of the image a probability quantifying the likelihood that the node belongs to some subregion. The computation of the colour distance is pursued by employing the coordinates in a colour space (e.g., RGB, XYZ, YCbCr) of a pixel and of the ones in its neighbourhood (e.g., in a 8–neighbourhood). The segmentation process is, therefore, reduced to an optimisation problem coupling the probabilities from the random walker approach, and the similarity with respect the labelled pixels. A further investigation involves an adaptive preprocess strategy using a regression tree for learning suitable weights to be used in the computation of the colour distance. We discuss the properties of the new method also by comparing with standard random walk and k−means approaches. The experimental results carried on the White Blood Cell (WBC) dataset and GrabCut datasets show the remarkable performance of the proposed method in comparison with state-of-the-art methods, such as normalised random walk and normalised lazy random walk, with respect to segmentation quality and computational time. Moreover, it reveals to be very robust with respect to the presence of noise and to the choice of the colourspace.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2383
Author(s):  
Mohamed Abd Elaziz ◽  
Esraa Osama Abo Zaid ◽  
Mohammed A. A. Al-qaness ◽  
Rehab Ali Ibrahim

Superixel is one of the most efficient of the image segmentation approaches that are widely used for different applications. In this paper, we developed an image segmentation based on superpixel and an automatic clustering using q-Generalized Pareto distribution under linear normalization (q-GPDL), called ASCQPHGS. The proposed method uses the superpixel algorithm to segment the given image, then the Density Peaks clustering (DPC) is employed to the results obtained from the superpixel algorithm to produce a decision graph. The Hunger games search (HGS) algorithm is employed as a clustering method to segment the image. The proposed method is evaluated using two different datasets, collected form Berkeley segmentation dataset and benchmark (BSDS500) and standford background dataset (SBD). More so, the proposed method is compared to several methods to verify its performance and efficiency. Overall, the proposed method showed significant performance and it outperformed all compared methods using well-known performance metrics.


Author(s):  
Md. Zahidul Islam ◽  
Shamsun Nahar ◽  
S.M. Shariful Islam ◽  
Saria Islam ◽  
Arnab Mukherjee ◽  
...  

Author(s):  
Jesus Chamorro-Martinez ◽  
Miriam Mengibar-Rodriguez ◽  
Pedro Manuel Martinez-Jimenez

Sign in / Sign up

Export Citation Format

Share Document