New global exponential stability results for a memristive neural system with time-varying delays

2014 ◽  
Vol 144 ◽  
pp. 553-559 ◽  
Author(s):  
Ailong Wu ◽  
Zhigang Zeng
2007 ◽  
Vol 17 (05) ◽  
pp. 407-417 ◽  
Author(s):  
QIANKUN SONG ◽  
JINDE CAO

In this paper, the impulsive Cohen-Grossberg neural network with unbounded discrete time-varying delays is considered. By using the analysis method and inequality technique, several sufficient conditions are obtained to ensure the global exponential stability of the addressed neural network. These results generalize the existing relevant stability results. Two examples with simulations are given to show the effectiveness of the obtained results.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaohui Xu ◽  
Jiye Zhang ◽  
Quan Xu ◽  
Zilong Chen ◽  
Weifan Zheng

This paper studies the global exponential stability for a class of impulsive disturbance complex-valued Cohen-Grossberg neural networks with both time-varying delays and continuously distributed delays. Firstly, the existence and uniqueness of the equilibrium point of the system are analyzed by using the corresponding property of M-matrix and the theorem of homeomorphism mapping. Secondly, the global exponential stability of the equilibrium point of the system is studied by applying the vector Lyapunov function method and the mathematical induction method. The established sufficient conditions show the effects of both delays and impulsive strength on the exponential convergence rate. The obtained results in this paper are with a lower level of conservatism in comparison with some existing ones. Finally, three numerical examples with simulation results are given to illustrate the correctness of the proposed results.


2004 ◽  
Vol 14 (05) ◽  
pp. 337-345 ◽  
Author(s):  
ZHIGANG ZENG ◽  
DE-SHUANG HUANG ◽  
ZENGFU WANG

This paper presents new theoretical results on global exponential stability of cellular neural networks with time-varying delays. The stability conditions depend on external inputs, connection weights and delays of cellular neural networks. Using these results, global exponential stability of cellular neural networks can be derived, and the estimate for location of equilibrium point can also be obtained. Finally, the simulating results demonstrate the validity and feasibility of our proposed approach.


Sign in / Sign up

Export Citation Format

Share Document