Nearly optimal sliding mode fault-tolerant control for affine nonlinear systems with state constraints

2016 ◽  
Vol 216 ◽  
pp. 78-88 ◽  
Author(s):  
Quan-Yong Fan ◽  
Guang-Hong Yang
Author(s):  
Shreekant Gayaka ◽  
Bin Yao

In this paper we present an output feedback based Adaptive Robust Fault Tolerant Control (ARFTC) strategy to solve the problem of output tracking in presence of actuator failures, disturbances and modeling uncertainties for a class of nonlinear systems. The class of faults addressed here include stuck actuators, actuator loss of efficiency or a combination of the two. We assume no a priori information regarding the instant of failure, failure pattern or fault size. The ARFTC combines the robustness of sliding mode controllers with the online learning capabilities of adaptive control to accommodate sudden changes in system parameters due to actuator faults. Comparative simulation studies are carried out on a nonlinear hypersonic aircraft model, which shows the effectiveness of the proposed scheme over back-stepping based robust adaptive fault-tolerant control.


Author(s):  
Marcello Bonfè ◽  
Paolo Castaldi ◽  
Nicola Mimmo ◽  
Silvio Simani

Active fault tolerant control of nonlinear systems: The cart-pole exampleThis paper describes the design of fault diagnosis and active fault tolerant control schemes that can be developed for nonlinear systems. The methodology is based on a fault detection and diagnosis procedure relying on adaptive filters designed via the nonlinear geometric approach, which allows obtaining the disturbance de-coupling property. The controller reconfiguration exploits directly the on-line estimate of the fault signal. The classical model of an inverted pendulum on a cart is considered as an application example, in order to highlight the complete design procedure, including the mathematical aspects of the nonlinear disturbance de-coupling method based on the nonlinear differential geometry, as well as the feasibility and efficiency of the proposed approach. Extensive simulations of the benchmark process and Monte Carlo analysis are practical tools for assessing experimentally the robustness and stability properties of the developed fault tolerant control scheme, in the presence of modelling and measurement errors. The fault tolerant control method is also compared with a different approach relying on sliding mode control, in order to evaluate benefits and drawbacks of both techniques. This comparison highlights that the proposed design methodology can constitute a reliable and robust approach for application to real nonlinear processes.


Sign in / Sign up

Export Citation Format

Share Document