Distributed optimization problem for double-integrator systems with the presence of the exogenous disturbance

2018 ◽  
Vol 272 ◽  
pp. 386-395 ◽  
Author(s):  
Ngoc-Tu Tran ◽  
Yan-Wu Wang ◽  
Wu Yang
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nawarat Ekkarntrong ◽  
Tipsuda Arunrat ◽  
Nimit Nimana

AbstractIn this paper, we consider a distributed optimization problem of minimizing sum of convex functions over the intersection of fixed-point constraints. We propose a distributed method for solving the problem. We prove the convergence of the generated sequence to the solution of the problem under certain assumption. We further discuss the convergence rate with an appropriate positive stepsize. A numerical experiment is given to show the effectiveness of the obtained theoretical result.


Author(s):  
Zicong Xia ◽  
Yang Liu ◽  
Jianquan Lu ◽  
Jianlong Qiu ◽  
Jinde Cao

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Junxiu Yan ◽  
Hui Yu

This paper addresses a distributed consensus optimization problem of a first-order multiagent system with time-varying delay. A continuous-time distributed optimization algorithm is proposed. Different from most ways of solving distributed optimization problem, the Lyapunov-Razumikhin theorem is applied to the convergence analysis instead of the Lyapunov-Krasovskii functionals with LMI conditions. A sufficient condition for the control parameters is obtained to make all the agents converge to the optimal solution of the system. Finally, an example is given to validate the effectiveness of our theoretical result.


Author(s):  
Xingnan Wen ◽  
Sitian Qin

AbstractMulti-agent systems are widely studied due to its ability of solving complex tasks in many fields, especially in deep reinforcement learning. Recently, distributed optimization problem over multi-agent systems has drawn much attention because of its extensive applications. This paper presents a projection-based continuous-time algorithm for solving convex distributed optimization problem with equality and inequality constraints over multi-agent systems. The distinguishing feature of such problem lies in the fact that each agent with private local cost function and constraints can only communicate with its neighbors. All agents aim to cooperatively optimize a sum of local cost functions. By the aid of penalty method, the states of the proposed algorithm will enter equality constraint set in fixed time and ultimately converge to an optimal solution to the objective problem. In contrast to some existed approaches, the continuous-time algorithm has fewer state variables and the testification of the consensus is also involved in the proof of convergence. Ultimately, two simulations are given to show the viability of the algorithm.


2014 ◽  
Vol 56 (2) ◽  
pp. 160-178 ◽  
Author(s):  
JUEYOU LI ◽  
CHANGZHI WU ◽  
ZHIYOU WU ◽  
QIANG LONG ◽  
XIANGYU WANG

AbstractWe consider a distributed optimization problem over a multi-agent network, in which the sum of several local convex objective functions is minimized subject to global convex inequality constraints. We first transform the constrained optimization problem to an unconstrained one, using the exact penalty function method. Our transformed problem has a smaller number of variables and a simpler structure than the existing distributed primal–dual subgradient methods for constrained distributed optimization problems. Using the special structure of this problem, we then propose a distributed proximal-gradient algorithm over a time-changing connectivity network, and establish a convergence rate depending on the number of iterations, the network topology and the number of agents. Although the transformed problem is nonsmooth by nature, our method can still achieve a convergence rate, ${\mathcal{O}}(1/k)$, after $k$ iterations, which is faster than the rate, ${\mathcal{O}}(1/\sqrt{k})$, of existing distributed subgradient-based methods. Simulation experiments on a distributed state estimation problem illustrate the excellent performance of our proposed method.


Sign in / Sign up

Export Citation Format

Share Document