A novel decentralized detection framework for quality-related faults in manufacturing industrial processes

2021 ◽  
Vol 428 ◽  
pp. 30-41
Author(s):  
Liang Ma ◽  
Jie Dong ◽  
Changjun Hu ◽  
Kaixiang Peng
Author(s):  
O.H. Ando Junior ◽  
J.L. Ferro ◽  
C.L. Izidoro ◽  
E. Maestrelli ◽  
A.D. Spacek ◽  
...  

2018 ◽  
Author(s):  
Hossam H Tayeb ◽  
Marina Stienecker ◽  
Anton Middelberg ◽  
Frank Sainsbury

Biosurfactants, are surface active molecules that can be produced by renewable, industrially scalable biologic processes. DAMP4, a designer biosurfactant, enables the modification of interfaces via genetic or chemical fusion to functional moieties. However, bioconjugation of addressable amines introduces heterogeneity that limits the precision of functionalization as well as the resolution of interfacial characterization. Here we designed DAMP4 variants with cysteine point mutations to allow for site-specific bioconjugation. The DAMP4 variants were shown to retain the structural stability and interfacial activity characteristic of the parent molecule, while permitting efficient and specific conjugation of polyethylene glycol (PEG). PEGylation results in a considerable reduction on the interfacial activity of both single and double mutants. Comparison of conjugates with one or two conjugation sites shows that both the number of conjugates as well as the mass of conjugated material impacts the interfacial activity of DAMP4. As a result, the ability of DAMP4 variants with multiple PEG conjugates to impart colloidal stability on peptide-stabilized emulsions is reduced. We suggest that this is due to constraints on the structure of amphiphilic helices at the interface. Specific and efficient bioconjugation permits the exploration and investigation of the interfacial properties of designer protein biosurfactants with molecular precision. Our findings should therefore inform the design and modification of biosurfactants for their increasing use in industrial processes, and nutritional and pharmaceutical formulations.


2016 ◽  
Author(s):  
Amaury Pérez Martínez ◽  
Oscar Miguel Rivera-Borroto ◽  
Gerardo M. Casañola-Martín ◽  
Karel Dieguez Santana

2008 ◽  
Vol 59 (7) ◽  
Author(s):  
Sanda Florentina Mihalache

A modelling approach that will facilitate an in-depth understanding of the interactions of the different phenomena, human interactions and environmental factors constituting �real world� industrial processes is presented. An important industrial system such as Gas Processing Unit (GPU) have inter-related internal process activities coexisting with external events and requires a real time inter-disciplinary approach to model them. This modeling framework is based on identifying as modules, the part of processes that have interactions and can be considered active participants in overall behaviour. The selected initial set of modules are structured as Petri net models and made to interact iteratively to provide process states of the system. The modeling goal is accomplished by identifying the evolution of the process states as a means of effective representation of the �actual running�� of the industrial process. The paper discusses the function and the implementation of the modelling method as applicable to the industrial case of GPU.


Sign in / Sign up

Export Citation Format

Share Document