scholarly journals One Dimensional Convolutional Neural Networks for Seizure Onset Detection Using Long-term Scalp and Intracranial EEG

2021 ◽  
Author(s):  
Xiaoshuang Wang ◽  
Xiulin Wang ◽  
Wenya Liu ◽  
Zheng Chang ◽  
Tommi Karkkainen ◽  
...  
Author(s):  
Xiaoshuang Wang ◽  
Guanghui Zhang ◽  
Ying Wang ◽  
Lin Yang ◽  
Zhanhua Liang ◽  
...  

Seizure prediction using intracranial electroencephalogram (iEEG) has attracted an increasing attention during recent years. iEEG signals are commonly recorded in the form of multiple channels. Many previous studies generally used the iEEG signals of all channels to predict seizures, ignoring the consideration of channel selection. In this study, a method of one-dimensional convolutional neural networks (1D-CNN) combined with channel selection strategy was proposed for seizure prediction. First, we used 30-s sliding windows to segment the raw iEEG signals. Then, the 30-s iEEG segments, which were in three channel forms (single channel, channels only from seizure onset or free zone and all channels from seizure onset and free zones), were used as the inputs of 1D-CNN for classification, and the patient-specific model was trained. Finally, the channel form with the best classification was selected for each patient. The proposed method was evaluated on the Freiburg Hospital iEEG dataset. In the situation of seizure occurrence period (SOP) of 30[Formula: see text]min and seizure prediction horizon (SPH) of 5[Formula: see text]min, 98.60[Formula: see text] accuracy, 98.85[Formula: see text] sensitivity and 0.01/h false prediction rate (FPR) were achieved. In the situation of SOP of 60[Formula: see text]min and SPH of 5[Formula: see text]min, 98.32[Formula: see text] accuracy, 98.48[Formula: see text] sensitivity and 0.01/h FPR were attained. Compared with the many existing methods using the same iEEG dataset, our method showed a better performance.


2022 ◽  
Vol 71 ◽  
pp. 103203
Author(s):  
Roberto Sánchez-Reolid ◽  
Francisco López de la Rosa ◽  
María T. López ◽  
Antonio Fernández-Caballero

2011 ◽  
Vol 22 ◽  
pp. S29-S35 ◽  
Author(s):  
Alaa Kharbouch ◽  
Ali Shoeb ◽  
John Guttag ◽  
Sydney S. Cash

2019 ◽  
Vol 7 (1) ◽  
pp. 171-190 ◽  
Author(s):  
Matthias Meyer ◽  
Samuel Weber ◽  
Jan Beutel ◽  
Lothar Thiele

Abstract. Passive monitoring of ground motion can be used for geophysical process analysis and natural hazard assessment. Detecting events in microseismic signals can provide responsive insights into active geophysical processes. However, in the raw signals, microseismic events are superimposed by external influences, for example, anthropogenic or natural noise sources that distort analysis results. In order to be able to perform event-based geophysical analysis with such microseismic data records, it is imperative that negative influence factors can be systematically and efficiently identified, quantified and taken into account. Current identification methods (manual and automatic) are subject to variable quality, inconsistencies or human errors. Moreover, manual methods suffer from their inability to scale to increasing data volumes, an important property when dealing with very large data volumes as in the case of long-term monitoring. In this work, we present a systematic strategy to identify a multitude of external influence sources, characterize and quantify their impact and develop methods for automated identification in microseismic signals. We apply the strategy developed to a real-world, multi-sensor, multi-year microseismic monitoring experiment performed at the Matterhorn Hörnligrat (Switzerland). We develop and present an approach based on convolutional neural networks for microseismic data to detect external influences originating in mountaineers, a major unwanted influence, with an error rate of less than 1 %, 3 times lower than comparable algorithms. Moreover, we present an ensemble classifier for the same task, obtaining an error rate of 0.79 % and an F1 score of 0.9383 by jointly using time-lapse image and microseismic data on an annotated subset of the monitoring data. Applying these classifiers to the whole experimental dataset reveals that approximately one-fourth of events detected by an event detector without such a preprocessing step are not due to seismic activity but due to anthropogenic influences and that time periods with mountaineer activity have a 9 times higher event rate. Due to these findings, we argue that a systematic identification of external influences using a semi-automated approach and machine learning techniques as presented in this paper is a prerequisite for the qualitative and quantitative analysis of long-term monitoring experiments.


2020 ◽  
Vol 14 (5) ◽  
pp. 985-996 ◽  
Author(s):  
Kang Zhao ◽  
Hanjun Jiang ◽  
Zhihua Wang ◽  
Ping Chen ◽  
Binjie Zhu ◽  
...  

2019 ◽  
Vol 8 (4) ◽  
pp. 160 ◽  
Author(s):  
Bingxin Liu ◽  
Ying Li ◽  
Guannan Li ◽  
Anling Liu

Spectral characteristics play an important role in the classification of oil film, but the presence of too many bands can lead to information redundancy and reduced classification accuracy. In this study, a classification model that combines spectral indices-based band selection (SIs) and one-dimensional convolutional neural networks was proposed to realize automatic oil films classification using hyperspectral remote sensing images. Additionally, for comparison, the minimum Redundancy Maximum Relevance (mRMR) was tested for reducing the number of bands. The support vector machine (SVM), random forest (RF), and Hu’s convolutional neural networks (CNN) were trained and tested. The results show that the accuracy of classifications through the one dimensional convolutional neural network (1D CNN) models surpassed the accuracy of other machine learning algorithms such as SVM and RF. The model of SIs+1D CNN could produce a relatively higher accuracy oil film distribution map within less time than other models.


Sign in / Sign up

Export Citation Format

Share Document