Adaptive Multi-scale Dual Attention Network for Semantic Segmentation

2021 ◽  
Author(s):  
Weizhen Wang ◽  
Suyu Wang ◽  
Yue Li ◽  
Yue Li
Author(s):  
Ruigang Niu ◽  
Xian Sun ◽  
Yu Tian ◽  
Wenhui Diao ◽  
Kaiqiang Chen ◽  
...  

Author(s):  
Haixing Li ◽  
Haibo Luo ◽  
Wang Huan ◽  
Zelin Shi ◽  
Chongnan Yan ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chih-Wei Lin ◽  
Yu Hong ◽  
Jinfu Liu

Abstract Background Glioma is a malignant brain tumor; its location is complex and is difficult to remove surgically. To diagnosis the brain tumor, doctors can precisely diagnose and localize the disease using medical images. However, the computer-assisted diagnosis for the brain tumor diagnosis is still the problem because the rough segmentation of the brain tumor makes the internal grade of the tumor incorrect. Methods In this paper, we proposed an Aggregation-and-Attention Network for brain tumor segmentation. The proposed network takes the U-Net as the backbone, aggregates multi-scale semantic information, and focuses on crucial information to perform brain tumor segmentation. To this end, we proposed an enhanced down-sampling module and Up-Sampling Layer to compensate for the information loss. The multi-scale connection module is to construct the multi-receptive semantic fusion between encoder and decoder. Furthermore, we designed a dual-attention fusion module that can extract and enhance the spatial relationship of magnetic resonance imaging and applied the strategy of deep supervision in different parts of the proposed network. Results Experimental results show that the performance of the proposed framework is the best on the BraTS2020 dataset, compared with the-state-of-art networks. The performance of the proposed framework surpasses all the comparison networks, and its average accuracies of the four indexes are 0.860, 0.885, 0.932, and 1.2325, respectively. Conclusions The framework and modules of the proposed framework are scientific and practical, which can extract and aggregate useful semantic information and enhance the ability of glioma segmentation.


2021 ◽  
Vol 13 (15) ◽  
pp. 3021
Author(s):  
Bufan Zhao ◽  
Xianghong Hua ◽  
Kegen Yu ◽  
Xiaoxing He ◽  
Weixing Xue ◽  
...  

Urban object segmentation and classification tasks are critical data processing steps in scene understanding, intelligent vehicles and 3D high-precision maps. Semantic segmentation of 3D point clouds is the foundational step in object recognition. To identify the intersecting objects and improve the accuracy of classification, this paper proposes a segment-based classification method for 3D point clouds. This method firstly divides points into multi-scale supervoxels and groups them by proposed inverse node graph (IN-Graph) construction, which does not need to define prior information about the node, it divides supervoxels by judging the connection state of edges between them. This method reaches minimum global energy by graph cutting, obtains the structural segments as completely as possible, and retains boundaries at the same time. Then, the random forest classifier is utilized for supervised classification. To deal with the mislabeling of scattered fragments, higher-order CRF with small-label cluster optimization is proposed to refine the classification results. Experiments were carried out on mobile laser scan (MLS) point dataset and terrestrial laser scan (TLS) points dataset, and the results show that overall accuracies of 97.57% and 96.39% were obtained in the two datasets. The boundaries of objects were retained well, and the method achieved a good result in the classification of cars and motorcycles. More experimental analyses have verified the advantages of the proposed method and proved the practicability and versatility of the method.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Jingfang Yang ◽  
Bochang Zou ◽  
Huadong Qiu ◽  
Zhi Li

2021 ◽  
Author(s):  
Liang Chao ◽  
Wang Xiaoyu ◽  
Song Yu ◽  
Jiang Changhong

2021 ◽  
pp. 016173462110425
Author(s):  
Jianing Xi ◽  
Jiangang Chen ◽  
Zhao Wang ◽  
Dean Ta ◽  
Bing Lu ◽  
...  

Large scale early scanning of fetuses via ultrasound imaging is widely used to alleviate the morbidity or mortality caused by congenital anomalies in fetal hearts and lungs. To reduce the intensive cost during manual recognition of organ regions, many automatic segmentation methods have been proposed. However, the existing methods still encounter multi-scale problem at a larger range of receptive fields of organs in images, resolution problem of segmentation mask, and interference problem of task-irrelevant features, obscuring the attainment of accurate segmentations. To achieve semantic segmentation with functions of (1) extracting multi-scale features from images, (2) compensating information of high resolution, and (3) eliminating the task-irrelevant features, we propose a multi-scale model with skip connection framework and attention mechanism integrated. The multi-scale feature extraction modules are incorporated with additive attention gate units for irrelevant feature elimination, through a U-Net framework with skip connections for information compensation. The performance of fetal heart and lung segmentation indicates the superiority of our method over the existing deep learning based approaches. Our method also shows competitive performance stability during the task of semantic segmentations, showing a promising contribution on ultrasound based prognosis of congenital anomaly in the early intervention, and alleviating the negative effects caused by congenital anomaly.


Sign in / Sign up

Export Citation Format

Share Document