Learning interpretable multi-class models by means of hierarchical decomposition: Threshold Control for Nested Dichotomies

2021 ◽  
Author(s):  
J.A. Fdez-Sánchez ◽  
J.D. Pascual-Triana ◽  
A. Fernández ◽  
F. Herrera
2021 ◽  
Author(s):  
Matthew R. Schofield ◽  
Michael J. Maze ◽  
John A. Crump ◽  
Matthew P. Rubach ◽  
Renee Galloway ◽  
...  

2021 ◽  
Vol 253 ◽  
pp. 106572
Author(s):  
Daisuke Ishihara ◽  
Rei Takata ◽  
Prakasha Chigahalli Ramegowda ◽  
Naoto Takayama

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1359
Author(s):  
Anindya-Sundar Jana ◽  
Hwa-Dong Liu ◽  
Shiue-Der Lu ◽  
Chang-Hua Lin

The traditional perturbation and observation (P&O) maximum power point tracking (MPPT) algorithm of a structure is simple and low-cost. However, the P&O algorithm is prone to divergence under solar radiation when the latter varies rapidly and the P&O algorithm cannot track the maximum power point (MPP) under partial shading conditions (PSCs). This study proposes an algorithm from the P&O algorithm combined with the solar radiation value detection scheme, where the solar radiation value detection is based on the solar photovoltaic (SPV) module equivalent conductance threshold control (CTC). While the proposed algorithm can immediately judge solar radiation, it also has suitable control strategies to achieve the high efficiency of MPPT especially for the rapid change in solar radiation and PSCs. In the actual test of the proposed algorithm and the P&O algorithm, the MPPT efficiency of the proposed algorithm could reach 99% under solar radiation, which varies rapidly, and under PSCs. However, in the P&O algorithm, the MPPT efficiency was 96% under solar radiation, which varies rapidly, while the MPPT efficiency was only 80% under PSCs. Furthermore, in verifying the experimental results, the proposed algorithm’s performance was higher than the P&O algorithm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eva Turk ◽  
Simona Kralj-Fišer ◽  
Matjaž Kuntner

AbstractHeterogeneity in species diversity is driven by the dynamics of speciation and extinction, potentially influenced by organismal and environmental factors. Here, we explore macroevolutionary trends on a phylogeny of golden orbweavers (spider family Nephilidae). Our initial inference detects heterogeneity in speciation and extinction, with accelerated extinction rates in the extremely sexually size dimorphic Nephila and accelerated speciation in Herennia, a lineage defined by highly derived, arboricolous webs, and pronounced island endemism. We evaluate potential drivers of this heterogeneity that relate to organisms and their environment. Primarily, we test two continuous organismal factors for correlation with diversification in nephilids: phenotypic extremeness (female and male body length, and sexual size dimorphism as their ratio) and dispersal propensity (through range sizes as a proxy). We predict a bell-shaped relationship between factor values and speciation, with intermediate phenotypes exhibiting highest diversification rates. Analyses using SSE-class models fail to support our two predictions, suggesting that phenotypic extremeness and dispersal propensity cannot explain patterns of nephilid diversification. Furthermore, two environmental factors (tropical versus subtropical and island versus continental species distribution) indicate only marginal support for higher speciation in the tropics. Although our results may be affected by methodological limitations imposed by a relatively small phylogeny, it seems that the tested organismal and environmental factors play little to no role in nephilid diversification. In the phylogeny of golden orbweavers, the recent hypothesis of universal diversification dynamics may be the simplest explanation of macroevolutionary patterns.


Sign in / Sign up

Export Citation Format

Share Document