The acute effects of periodic and noisy tendon vibration on wrist muscle stretch responses

2021 ◽  
pp. 136279
Author(s):  
Gregg Eschelmuller ◽  
Romeo Chua ◽  
Mark G. Carpenter ◽  
J. Timothy Inglis
2012 ◽  
Vol 37 (4) ◽  
pp. 657-663 ◽  
Author(s):  
Thomas Lapole ◽  
François Deroussen ◽  
Chantal Pérot ◽  
Michel Petitjean

Prolonged vibration is known to alter muscle performance. Attenuation of Ia afferent efficacy is the main mechanism suggested. However, changes in motor cortex excitability could also be hypothesized. The purpose of the present study was therefore to analyze the acute and outlasting effects of 1 h of Achilles tendon vibration (frequency, 50 Hz) on the soleus (SOL) and tibialis anterior (TA) neuromuscular excitability. Spinal excitability was investigated by means of H-reflexes and F-waves while cortical excitability was characterized by motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation. Twelve subjects performed the experimental procedures 3 times: at the beginning of the testing session (PRE), immediately after 1 h of Achilles tendon vibration (POST), and 1 h after the end of vibration (POST-1H). Prolonged vibration led to acute reduced H-reflex amplitudes for SOL only (46.9% ± 7.7% vs. 32.8% ± 7%; p = 0.006). Mainly presynaptic inhibition mechanisms were thought to be involved because of unchanged F-wave persistence and amplitude mean values, suggesting unaffected motoneuronal excitability. While no acute effects were reported for SOL and TA cortical excitability, both muscles were characterized by an outlasting increase in their MEP amplitude (0.64 ± 0.2 mV vs. 0.43 ± 0.18 mV and 2.17 ± 0.56 mV vs. 1.26 ± 0.36 mV, respectively; p < 0.05). The high modulation of Ia afferent input by vibration led to changes in motor cortex excitability that could contribute to the enhancement in muscular activation capacities reported after chronic use of tendon vibration.


1993 ◽  
Vol 70 (04) ◽  
pp. 707-711 ◽  
Author(s):  
Andrew D Blann ◽  
Charles N McCollum

SummaryThe effect of smoking on the blood vessel intima was examined by comparing indices of endothelial activity in serum from smokers with that from non-smokers. Serum from smokers contained higher levels of von Willebrand factor (p <0.01), the smoking markers cotinine (p <0.02) and thiocyanate (p <0.01), and was more cytotoxic to endothelial cells in vitro (p <0.02) than serum from non-smokers. The acute effects of smoking two unfiltered medium tar cigarettes was to briefly increase von Willebrand factor (p <0.001) and cytotoxicity of serum to endothelial cells in vitro (p <0.005), but lipid peroxides or thiocyanate were not increased by this short exposure to tobacco smoke. Although there were correlations between von Willebrand factor and smokers consumption of cigarettes (r = 0.28, p <0.02), number of years smoking (r = 0.41, p <0.001) and cotinine (r = 0.45, p <0.01), the tissue culture of endothelial cells with physiological levels of thiocyanate or nicotine suggested that these two smoking markers were not cytotoxic. They are therefore unlikely to be directly responsible for increased von Willebrand factor in the serum of smokers. We suggest that smoking exerts a deleterious influence on the endothelium and that the mechanism is complex.


2016 ◽  
Author(s):  
Sarah Bristow ◽  
Emma Billington ◽  
Greg Gamble ◽  
Kwant Jordyn de ◽  
Angela Stewart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document