Saturated impulsive control for synchronization of coupled delayed neural networks

2021 ◽  
Vol 141 ◽  
pp. 261-269
Author(s):  
Shuchen Wu ◽  
Xiaodi Li ◽  
Yanhui Ding
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yang Fang ◽  
Kang Yan ◽  
Kelin Li

This paper is concerned with the impulsive synchronization problem of chaotic delayed neural networks. By employing Lyapunov stability theorem, impulsive control theory and linear matrix inequality (LMI) technique, several new sufficient conditions ensuring the asymptotically synchronization for coupled chaotic delayed neural networks are derived. Based on these new sufficient conditions, an impulsive controller is designed. Moreover, the stable impulsive interval of synchronized neural networks is objectively estimated by combining the MATLAB LMI toolbox and one of the two given equations. Two examples with numerical simulations are given to illustrate the effectiveness of the proposed method.


2019 ◽  
Vol 41 (13) ◽  
pp. 3714-3724 ◽  
Author(s):  
Tianhu Yu ◽  
Huamin Wang ◽  
Dengqing Cao

The synchronization problem of coupled neural networks via impulsive control is investigated in the present paper. Based on a time varying Lyapunov functional associated with the impulsive time sequence, the delay-dependent criteria in terms of linear matrix inequalities are derived to guarantee the synchronization of the coupled neural networks. The obtained criteria are closely related to both the lower and the upper bound of the adjacent impulsive instant difference. By solving the corresponding linear matrix inequalities, the synchronization criteria can be used to estimate the upper bound of both transmission delay and distributed-delay. The low-dimensional criteria also are obtained for the coupled neural networks with identical nodes. Finally, two examples are given to illustrate the validity of the proposed hybrid control.


Sign in / Sign up

Export Citation Format

Share Document